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I. INTRODUCTION 

Computational Chemistry has evolved over the last few years into a 

powerful tool which can accurately describe both atomic and molecular 

properties in very close agreement with experimental observations. 

Although the basic ideas of quantum mechanics were set in the beginning of 

this century, definite difficulties in their application to real systems 

prevented theorists from making early computational breakthroughs. This 

problem was recognized by Dirac (1929) who wrote: "The underlying physical 

laws necessary for the mathematical theory of the whole of chemistry are 

thus completely known, and the difficulty is only that the exact 

application of these laws leads to equations much too complicated to be 

soluble". The inability to solve the exact equations analytically yielded 

a plethora of approximate solutions. These are due to the fact that in 

order for the quantum mechanical ideas to be applied to real systems 

various approximations need to be employed which in turn introduce errors 

to the values of the computed physical quantities. Furthermore the crudity 

of these approximations and as a consequence the magnitude of the errors 

they introduce increase rapidly with the size of the system. 

The approximations used in molecular modelling are tested in cases 

where experimental data are available - usually compared against 

spectroscopic measurements or X-ray diffraction studies - at nuclear 

configurations describing stable and/or metastable species of real 

molecules. By comparing the experimental data with the theoretical 

predictions, theoreticians were able to build over the years a level of 
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theory which although is far from being simple and understandable by 

someone without explicit knowledge of advanced applied mathematical 

techniques, has succeeded in providing the theoretical background needed to 

give some insight into important chemical concepts such as molecular 

bonding, reactivity, reaction mechanisms as well as equilibrium geometries 

and amounts of energy needed or released during various chemical reactions. 

By testing the validity of the theoretical approximations in cases 

where experimental data are available (i.e. ground states of small 

molecules) one can furthermore employ them in a predictive manner in order 

to speculate about species lacking direct experimental verification (i.e. 

short-life intermediates). The latter consist of structures for transition 

states or other metastable species occurring during chemical reactions, 

yielding therefore energy barriers, reaction paths, rates as well as the 

energy contents of various chemical processes. In order to achieve these 

goals it is desirable to be able to visualize the way the nuclei move 

around during a chemical reaction as well as the energy content associated 

with these nuclear motions. 

One of the most important approximations used in electronic structure 

calculations which has almost universal validity is the one proposed by 

Born and Oppenheimer (1927). It states that due to the fact that the 

electrons are much lighter than the nuclei, the latter can be consider 

standing still. Therefore it is possible to uncouple the theoretical 

treatment of the electronic and nuclear motions. The electronic motions 

are obtained by calculating the electronic energy for various fixed nuclear 

coordinates qj^, q2 q^ and adding the electrostatic nuclear repulsion 
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energy. For a polyatomic molecule consisting of N atoms the electronic 

energy is represented by a hypersurface in N dimensions; 

^eZec.'f (91*92'' ) (1.1) 

This hypersurface is known as the potential energy surface (PES) of 

the system. Once the PES is known the nuclear motions can be determined 

either through vibrational (small displacements) or dynamics (large 

displacements) calculations. Furthermore the topology of the potential 

energy hypersurface unveils useful information concerning the molecular 

system. Different points on a PES represent different nuclear 

configurations corresponding to different conformations of the same 

molecular species. The points of interest on a PES (critical points) are 

these where the first derivative of the energy (gradient) is zero with 

respect to all coordinates: 

97(90)-
rafl 

9-90 
( 1 . 2 )  

Further classification of the critical points is achieved by examining the 

eigenvalues of the matrix of second derivatives (hessian) at these points: 

Wfj(90)-
dh 

.a9/39jJ 
9-90 ( 1 . 3 )  
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Critical points where all eigenvalues of the hesslan are positive are 

classified as minima on a PES and correspond to stable or metastable 

molecules. For example the C2y ground state geometry of H2O corresponds to 

a minimum on a 2-dimensional surface of the energy with respect to the 

nuclear coordinates. The coordinates of this minimum correspond to an H-0-

H angle of 104.5' and an 0-H bond length of 0.957 Â. The points where the 

hesslan has only 1 negative eigenvalue can be visualized as "mountain 

passes" on a topographic map. Starting at these points it is always 

possible to follow a steepest descent path along which the gradient of the 

energy is maximum on either side of the direction to which the negative 

eigenvalue of the hesslan points and end up in a minimum. The path 

connecting two minima on a PES almost always passes through a point where 

the hesslan has one negative eigenvalue (saddle point) and at that point 

the energy has the maximum value with respect to all other points of the 

path. A chemical reaction can then be visualized as the nuclear 

rearrangements happening when following a path on a PES from one minimum 

(corresponding to the reactants) to the other (corresponding to the 

products). The endo/exothermicity of the reaction is then the energy 

difference between the two minima corresponding to the reactants and 

products. Among all saddle points, that might connect two minima on a PES 

through different paths, the one having the lowest energy is called the 

transition state of the reaction. The energy difference between the 

transition state and the reactant minimum is the barrier or activation 

energy needed for the system in order to "climb" from the reactant minimum 

to the "mountain pass". Paths on a PES connecting a minimum with many 
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different ones correspond to different reactions and therefore have 

different transition states. The relative magnitudes of the different 

barriers corresponding to different reactions starting from the same 

minimum determine in many cases the route along which a reaction will 

proceed among the many choices it might have. Finally the points on a PES 

at which the hessian has more than 2 negative eigenvalues correspond to 

local maxima having a high energy content and are of no particular interest 

since they correspond to very unstable and thus very unlikely nuclear 

conformations. 

In a polyatomic molecule of N atoms the energy is, within the Born-

Oppenheimer approximation excluding translations and rotations, a function 

of 3N-6 (3N-5 for linear species) internal coordinates (i.e. bond lengths 

and/or bond angles). The computation of accurate potential energy surfaces 

is therefore a laborious task. This is mainly the reason that in the past 

only very small regions of PESs around the minima corresponding to stable 

species were known. The rest of the PES was computed using semi-empirical 

methods which contained a lot of uncertainties. A computational method in 

order to be appropriate for computing PESs should meet the following 

standards; describe all species on equal basis as much as possible, account 

for the fact that the orbitale change both in character and occupation 

numbers and accurately simulate bond formation(s) and breaking(s). 

Furthermore it should recover most of the electronic correlation energy by 

mixing of various configurations. It is therefore apparent that in order to 

be able to accurately describe the nuclear rearrangements and their 

associated energetic effects occurring during a chemical reaction the 
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employment of methods beyond SCF is desirable. To this end a 

multiconfigurational wavefunction represents a very accurate first step. 

In this approximation the iJulti Configuration Self Consistent Field (MCSCF) 

wavefunction * Is written as a sum of Symmetry Adapted ^ntisynunetrized 

Products (SAAPs) 9^^: 

•<ct-r C^t *«t^" (1.4) 
#c,t 

The SAAPs are themselves N electron wavefunctions : 

{space,  spin)^f (A{Ui({space)e^^ {spin))  ( 1 . 5 )  

where 6^^^ are spin eigenfunctions 

S, M are the eigenvalues of S^ and S^ respectively 

is a product of configuration generating orbitals 

A is the antisymmetrizer 

is the normalization constant 

Furthermore the Full Optimized Reaction Space (FORS) model introduced 

by Ruedenberg and Sundberg (1976) and further developed by Ruedenberg, 

Schmidt, Gilbert and Elbert (1982) can be implemented within the MCSCF 

framework to determine the best wavefunction obtained by a superposition of 

all possible configurations generated from a formal minimal basis of the 

orbitals which change throughout the chemical reaction. 
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Trlatomlc molecules have drawn considerable attention in the past 

because they are the smallest molecular systems for which there exist a 

non-trivial (i.e. with dimension higher than one) potential energy surface. 

The lowest symmetry they possess is Cg (a plane containing all 3 atoms) and 

their potential energy is a function of 3 internal coordinates (bond 

lengths or angles). In particular for the AB2-type triatomics (i.e. H2O, 

CO2 etc.) there exists a 2-dimensional subspace (plane) of the full 3-

dimensional surface with higher symmetry (C^y) representing nuclear 

conformations having equal A-B^ and A-B^ bond lengths. The possibility of 

existence of double minima on the potential energy surfaces of AB2-type 

molecules was first suggested by Hayes and Pfeiffer (1968) through the use 

of Walsh-type diagrams. The scope of this study is to investigate the 

complete ground state potential energy surfaces of O3 and CO2 since the 

understanding of the PESs of small systems is prerequisite for 

understanding the corresponding surfaces of polyatomic systems having many 

more nuclear coordinates. 

The ozone molecule, Og, and its reactions are important because of 

the potential health hazards which can result from ozone excess in the 

breathing air of large cities and from ozone deficiency in the upper 

atmosphere. In Chapter II the adiabatic energy surfaces of the lowest 

singlet states of the molecule and its dissociation products together with 

a complete investigation of the ground state PES are presented. In the 

course of the investigation of the ground state PES in €2^ some complicated 

features to which little attention has been paid before are discovered. 

These include the discovery of a ring minimum on the ground state potential 
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energy surface and a conical intersection between the 1- and 2- A^ 

potential energy surfaces in the vicinity of the ring opening transition 

state. 

Carbon dioxide and its reactions play important roles in atmospheric 

chemistry, in combustion chemistry and in the photochemical cycle 

connecting plants and animals. Most of these reactions depend upon the 

energy states of the system. Many experimental and a few theoretical 

studies notwithstanding, past knowledge about them has been essentially 

limited to narrow regions around the linear ground state equilibrium 

geometry. In Chapter III reliable global information on the CO2 ground 

state potential energy surface is presented. A carbene-type metastable 

species corresponding to a ring structure is found on the ground state 

potential energy surface. Furthermore various dissociation channels are 

also investigated. 

In Chapter IV the mechanism of the ring opening of singlet 

cyclopropylidene to aliéné is investigated. This reaction represents a 

prototype of bond fission of a cyclic carbene due to ring strain. Because 

of the consequential roles played by carbenes as well as by strained rings 

as reaction intermediates, this isomerlzation has fundamental implications 

for many organic reactions, including combustion phenomena. Although this 

molecule has 7 atoms it is treated as a ring of 3 carbons and the potential 

energy surface is obtained as a function of the C-C-C ring opening angle <i> 

and the two -CH2 rotation angles ^2 ̂ hlle the remaining 12 Internal 

coordinates are relaxed by energy minimization for each (^,52^,52) triple. 
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II. POTENTIAL ENERGY SURFACE OF THE GROUND STATE OF O3 

A. Introduction 

The concept of the adlabatlc potential energy surface defined within 

the Born-Oppenheimer approximation is of great importance in the 

understanding of the various reaction paths connecting the reactants with 

the products as well as in identifying any reactive intermediates and 

alternative routes through which a chemical reaction can proceed. The 

reliable determination of the energy separation of different potential 

energy surfaces associated with different electronic states of the 

molecular system is one of the cornerstones of molecular spectroscopy and 

photochemistry since it determines whether the molecules can "jump" from a 

higher electronic state to a lower one while at the same time transforming 

electronic energy into light. The accessibility of the higher electronic 

state for electronic transitions from the ground state is furthermore 

determined by various selection rules pertaining to the different 

sjnmmetries of the electronic states as well as the energy separation 

between them. 

The ground state potential energy surface of O3 is of particular 

interest due to the fact that the ground state of O3 dissociates to ground-

state products according to the scheme: 

^ + 0 (3f )  (2.1) 
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A preliminary study of the ground state potential energy surface by 

Murrell et. al. (1976) using semiempirical many-body expansions for the 

potential energy surface produced qualitative agreement with the 

experimental data for the ground state geometry of O3. By imposing 

symmetry on the potential function the same authors were able to reach 

qualitatively correct results. In the present treatment of the ground 

state PES no symmetry constraints are imposed to the wavefunction and the 

quantitatively correct geometry of the ground state comes as a natural 

consequence of the level of the ab-initio theory. 

B. Experimental data and previous theoretical calculations 

The importance of ozone in life and in particular its presence in the 

upper atmosphere has motivated a lot of previous experimental and 

theoretical studies, concerning the structure of the ground and several 

excited states as well as its photochemistry and dissociation process. 

Experimental evidence (cf. Herzberg 1966, p. 604) suggests that the ground 

state has a €2^^ structure with an 0-0-0 angle of 116.8° and an 0-0 bond 

length of 1.278 A. Its electronic structure corresponds to a Hartree-Fock 

singlet configuration: 

(Iai)2(lb2)2(2ai)2(3ai)2(2b2)2(4ai)2(5ai)2(3b2)2(lbi)2(4b2)2(6ai)2(la2)2 

The fact that ozone is extremely reactive and has a very low stability with 

respect to dissociation towards O2 + 0 in their ground electronic states 

does not fit in well with its symmetric bent structure and the presence of 

double bonds. It has therefore been suggested (cf. Pauling, 1960) that 

alternative forms corresponding to metastable species may exist. Pulse 
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radiolysis experiments of O2 by Hochanadel, Ghorraley and Boyle (1968) 

suggested the existence of a bound excited state which is stable to partial 

dissociation. Riley and Cahlll (1970) measured the half-life of this 

species to be 5 psec but they raised some questions on the issue of whether 

this was vibrationally excited ozone as it was previously thought. Optical 

absorption measurements during pulse radiolysis of oxygen gas experiments 

by Sevan and Johnson (1973) established the presence of two ozone 

precursors Oj" and 03®, having absorption maxima at 315 and 285 nm 

respectively, which were also considered at that time to be vibrationally 

excited ozone. Rosenberg and Trainor (1974) identified the Oj" species as 

vibrationally excited O3 whereas Burton and Harvey (1977) suggested that 

the O3** precursor which shows absorption at 315 nm and has a lifetime of 5 

/isec might correspond to a metastable species having D31, symmetry. In 

order to prove the above assumption it is necessary to compute the energy 

difference between the two minima and furthermore to establish the position 

of the Dj), species with respect to the 0% + 0 dissociation limit which is 

experimentally determined by Jones (1985) to lie 26.1 kcal/mol above the 

Cjy ground state. The energy separation between the and minima has 

been the subject of many theoretical calculations in the past most of which 

yielded conflicting results. Although it is unanimously agreed that the 

Djf, minimum lies above the Cjy ground state, the energy separation between 

the two minima is still the subject of debate. Wright (1973) was the only 

one to suggest that the ring state lies 6.2 kcal/mol below the ground state 

as a result of a two configuration minimal basis set calculation. Ab 

initio calculations with double zeta quality basis sets by Hay and Goddard 

(1972) and by Hay, Dunning and Goddard (1973) place the ring minimum 27.6 
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kcal/mole and 34.5 kcal/mole above the open structure respectively. Shih, 

Buenker and Peyerimhoff (1974) computed a value of 16 kcal/mole in the SCF-

CI level, Hay, Dunning and Goddard (1975) a value of 32.2 kcal/mole using 

GVB-CI wavefunctions while Harding and Goddard (1977) estimated the energy 

difference to be 27.3 kcal/mole in the GVB-POL-CI approximation. Using 

singles and doubles configuration interaction (CISD) wavefunctions Lucchese 

and Schaefer (1977) predicted a value of 17.8 kcal/mole whereas Hay and 

Dunning (1977) gave a value of 28.0 kcal/mole in the generalized valence 

bond plus singles and doubles GVB+(l+2) level. Additional two-reference 

CISD wavefunction calculations by Karlstrôm, Engstrôm and Jônsson (1978) 

based on multiconfiguration (MCSCF) orbitals yielded a value of 28.7 

kcal/mole. Burton (1979) used the PNO-CI and CEPA electron correlation 

methods with triple quality plus polarization (TZP) basis set to calculate 

a value of 12.0 kcal/mole. Wilson and Hopper (1981) report a value of 38.9 

kcal/mole using a 76 configuration MCSCF/CI wavefunction which however 

predicts a ring state with a near equilateral triangle geometry. Moreover 

Jones (1985) has calculated the energy difference to be 32.3 kcal/mole 

using density functional methods. The most recent studies by Moscardo, 

Andarias and San-Fabian (1988) in the CIPSI level place the ring structure 

21.1 kcal/mole above the ground state whereas Lee (1990) reports a value of 

28.7 kcal/mole in the coupled cluster including single, double and a 

perturbational estimate of triple excitations CCSD(T) level of theory 

including the zero-point vibrational energy and using a large [5s4p3d2fld] 

AND basis set. The last calculation which is probably the most accurate to 

date indicates that the ring minimum lies above the O2 + 0 dissociation 

limit. The discrepancy between the previous calculations is mainly due to 
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building up the MCSCF wavefunction. 

G. Method of calculation 

For the reliable determination of potential energy surfaces an MCSCF 

approach with an extended basis set is desired. This is due to the fact 

that different parts of the potential energy surface represent different 

bonding situations which require both redistribution of the electrons among 

the active molecular orbitals as well as reoptimization of the molecular 

orbitals themselves. The active space should be selected in a way that all 

important configurations at every part of the potential energy surface 

should be included in the wavefunction. The molecular orbitals should also 

be described by an extended basis set and additional polarization functions 

should be included in order to be able to handle bond formations and 

breakings. However, if large parts of the potential energy surface are to 

be explored, a compromise should be made as regards the size of the basis 

set. Furthermore for areas of the potential energy surface neighboring 

intersections of two potential energy surfaces of the same symmetry special 

attention should be given in the simultaneous optimization of the orbitals 

for both states by a state averaging calculation. 

In ©2 there are 24 electrons and 15 molecular orbitals. The FORS 

space is constructed by keeping the Is orbitals of the three Oxygen atoms 

doubly occupied and allowing the rest 18 electrons to be distributed in 

the 12 active orbitals creating therefore a full optimized valence space. 

The number of configurations for the four lowest lying singlet states of O3 
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in C2^ Is 4067, 3893, 3962 and 3858 for the and ^82 states 

respectively. We have used a Dunning-Hay (1977) basis set consisting of 

the segmented contractions (9s5pld/3s2pld) which yields a total of 45 basis 

functions. For the d-type polarization function the exponent fp-O.BS is 

used (cf. Dunning and Hay, 1977). All geometry optimizing calculations are 

performed using the GAMESS program by Dupuis et. al. (1980) while all state 

averaging calculations are performed with the MOLRPO program of Werner and 

Knowles (1988) . 

D. The lowest singlet states in €2^ 

1 1 1  The potential energy curves of O3 corresponding to the ^A^, ^A^, and 

^B2 states in €2^ are shown in Figure 2.1. The energy is plotted as a 

function of the 0-0-0 angle ̂  for each value of which the 0-0 bond lengths 

are optimized. The internal coordinates of the C2^ minima for the various 

singlet states of O3 are shown in Table 2.1. The ground state of O3 has 

C2y symmetry with an 0-0-0 angle of 116.31° and an 0-0 bond length of 1.299 

A. It lies 30.2 kcal/mole lower than another minimum on the ^A]̂  ground 

state PES which corresponds to an equilateral geometry structure having 

symmetry. It is worth pointing out that only the two ground state ^Aj^ 

minima at ^-60° and 116.31° are true minima upon asymmetric distortions 

when the symmetry is lowered to Cg. The hessian matrix at the points 

corresponding to the minima of the ^A2, ^Bj^ and ^B2 has one negative 

eigenvalue along the 62^ breaking normal mode, indicating that these 

structures correspond to transition states on the complete Cg potential 

energy surface. 
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Table 2.1. Minima on the O3 surface for the various Cgy states 

State <f)° R (A) E (hartree) AE® (kcal/mol) 

\ 116.31 1.299 -224.5523175 0.0 

60.00 1.470 -224.5041628 30.2 

99.58 1.379 -224.4960172 35.2 

111.92 1.482 -224.3875970 103.4 

117.50 1.482 -224.4789770 46.0 

46.27 1.785 -224.4074403 90.9 

with respect to the ground state minimum. 
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E. The Cgy potential energy surface for the state 

1. The ring minimum 

As it can be seen from Table 2.1 the ring minimum of O3 has 

symmetry having an 0-0-0 angle of 60° and an 0-0 bond length of 1.470 Â. 

The electronic configuration of the ring structure corresponds to a 

Hartree-Fock singlet configuration; 

(Iai)^lb2)^(2ai)^(3ai)^(2b2)^(4ai)^(5ai)^3b2)^(lbi)^(6ai)^(la2)^2bi)^ 

14 4 
Its difference from the open structure, which corresponds to a <7 tt system 

where the tt electrons occupy a bonding and a non-bonding molecular orbital, 

is a transfer of two electrons from the a to the TT molecular orbitals. The 

ring structure therefore corresponds to a system in which there is an 

additional anti-bonding n-molecular orbital occupied. The determination of 

its optimized geometry is performed in Cg symmetry and the higher symmetry 

elements come as a natural consequence of the ab-initio level of theory. 

The ring structure is a real minimum on the Cg potential energy surface 

since the hessian matrix evaluated at this point has 3 positive eigenvalues 

which correspond to the harmonic frequencies of the normal vibrational 

modes. There are 2 degenerate ones corresponding to the e' and one 

corresponding to the totally symmetric a^ mode. Their values calculated 

in the full valence space FORS MCSCF level are 750 and 1046 cm ^ 

respectively in fair agreement with Lee's (1990) reported values of 795 and 

1114 cm ^ in the CCSD(T) approximation with a [5s4p3d2f] ANO basis set. 

The analogous computed harmonic frequencies for the ground state 

minimum are 685, 1044 and 1093 cm ^ vs. Herzberg's (1966, p.604) 705, 1042 

and 1110 cm ^ experimental values and Lee's (1990) 718, 1053 and 1153 cm \ 
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These harmonic frequencies yield a value of 4.03 and 3.63 kcal/mol for the 

zero-point vibrational energy at the open and ring minima respectively. By 

including this correction the energy separation between the two minima 

becomes 29.8 kcal/mol which is within chemical accuracy with Lee's (1990) 

value of 28.7 kcal/mol. It is therefore at this point concluded that the 

ring minimum lies above the Oj + 0 dissociation limit which is 26.1 

kcal/mol above the ground state. 

2. Location of the transition state for ring opening 

For some time it was erroneously thought that the ring structure of 

Oj does not lie on the ground state potential energy surface but on a 

surface corresponding to an excited state of the same symmetry with the 

ground state denoted as 2-^Aj. The fact that the SCF configuration is 

different at the two minima was the reason for this misconception. However 

along the path that connects the ring with the open minimum, a part of 

which is shown in Figure 2.1, there is a continous change in the character 

of the MCSCF wavefunction the ring configuration being the dominant one at 

one end whereas the open configuration dominates at the other. This path 

lies exclusively on the ground state potential energy surface. 

The accessibility of the ground state from the ring minimum depends 

on one hand on the energy separation between them, a quantity which is 

accurately determined to be 29.8 kcal/mol in Section lI.E.l, and on the 

other hand on the barrier between the two minima. Furthermore the 

mechanism of the ring opening (i.e. the way that the nuclei move around in 

order for the geometry to change from the ring to the open structure) is 

governed by the ground state potential energy surface. As a first guess 
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one might assume that the ring opening occurs by increasing the 0-0-0 angle 

from 60° to 116.31° by keeping the 0-0 bond lengths equal at all times 

while at the same time adjusting them to the value that minimizes the 

energy for each Therefore by assuming Cjy symmetry the energy is a 

function of 2 coordinates (i.e. the 0-0-0 angle ^ and the 0-0 bond length 

R). Contours of the energy of the ground state potential energy 

surface are shown in Figure 2.2. The coordinates X and Y against which the 

energy is plotted are related to ^ and R according to: 

X - R sin(^/2) and Y - R cos(^/2) 

The choice of this coordinate system serves the following practical 

purpose; by placing the central oxygen atom at the origin, any point on the 

PES indicates the position of the second oxygen at one end whereas the 

position of the third oxygen at the other end is symmetric with respect to 

the Y axis. About 130 points are calculated in order to create the 2-

dimensional grid used to draw the energy contours with an increment of 10 

millihartree. For each point a full valence space FORS MCSCF calculation 

is performed with a wavefunction which has 4067 configurations. On this 

PES the ring mimimum is denoted by "R" and the open minimum by "0" . In 

between the two minima there exists a saddle point, denoted by "S which 

corresponds to the transition state of the ring opening upon preservation 

of Cjy symmetry. The geometry of the transition state and the barrier of 

the ring opening has not been accurately determined before appart from a 

qualitative estimation by Shih, Buenker and Peyerimhoff (1974). They 

report a barrier of 17.6 kcal/mol with respect to the ring minimum and a 
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Figure 2.2. Ground state potential energy surface in the full valence 

space FORS-MCSCF (4067 CSFs) approximation corresponding to the 

C2t̂  constrained ring opening of triangular O3. Increment: 10 

mhartree. R: ring minimum, 0: open minimum, S*: saddle point. 
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structure for the transition state having €2^ symmetry and internal 

coordinates ^ - 85° and R - 1.418 A. However they did not investigate 

whether the €2^ saddle point is the real transition state in the 

surface. In order for a structure to resemble a true transition state in 

the global ground state potential energy surface the hessian matrix 

evaluated at this point should have only one negative eigenvalue. Since 

the hessian at the transition state has already one negative eigenvalue 

the curvature of the PES away from €2^ symmetry (i.e. along the symmetry 

breaking mode corresponding to asymmetric distortions) should be 

investigated. Figure 2.3 shows a blow-up of the ground state PES 

around the point S where the energy contours are drawn with an increment 

of 0.1 millihartree. The surveilance of the area around S yields the 

following observations: The upper left part of the surface exhibits a 

different slope than the lower right part. This is due to the fact that in 

the former part the wavefunction has predominantly the character of the 

ring structure whereas in the latter part the configuration corresponding 

to the open part is dominating. The two parts are connected through a 

ridge across which the wavefunction changes character from the one 

configuration to the other very rapidly. Following similar arguments the 

wavefunction on the PES corresponding to the first excited state 2-V^ 

should exhibit a similar behavior but with inverse character: at geometries 

corresponding to small 0-0-0 angles its dominant configuration should 

resemble the one of the open structure and vice versa. On the PES for the 

first excited 2-V^ state there presumably exists a valley across which the 

wavefunction of the excited state rapidly changes character from the open 

to the ring structure. The Cjy transition state S on the ground state 
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surface lies on the ridge and very close to it there exists a local maximum 

denoted as "I" on Figure 2.3. The presence of this unusual point and the 

topology around it suggests that there is a possibility that the two PES 

corresponding to the two low lying states l-^A^ and 2-^A2 come very close 

together along this ridge and might touch each other at the point I. In 

order to investigate this possibility and to accurately determine the 

geometry and the energy of the C2y transition state, both states should be 

calculated in the vicinity of the ridge. Furthermore since after locating 

the C2^ transition state the curvature of the ground state PES away from 

C2y symmetry is going to be investigated in order to determine whether the 

C2y transition state is the real transition state in Cg, the topology of 

the manifolds along which PES intersect each other should also be examined. 

3. The intersection between the l-^A^ and 2-^k-^ surfaces 

It is sometimes common that at the points on the potential energy 

surface which correspond to the reactant and product of a chemical reaction 

there exist higher symmetry elements than the ones present at points 

corresponding to intermediate geometries (i.e. along the reaction path). 

It is also possible that the molecular geometries for parts of the reaction 

path transform according to different irreducible representations of the 

same symmetry point group. This happens when they lie on potential energy 

surfaces corresponding to different electronic states that intersect each 

other. Hund (1927) was the first one to recognize that at the point(s) 

where two potential energy surfaces intersect each other the wavefunction 

is degenerate. Von Neumann and Wigner (1929) and Teller (1937) have given 

the mathematical proof of Hund's qualitative argument. Following Teller's 
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(1937) formalism let us suppose that all but two of the solutions of the 

electronic wavefunction have been determined and (f>^, two functions 

which together with the solutions of the electronic wavefunction form a 

complete orthonormal set. The two remaining solutions of the electronic 

wavefunction can then be written as: 

$  -  ( 2 . 2 )  

where c^ and Cg are constants. The energies of these two electronic states 

are : 

£•, - <2.3) 

where 

\<l>) m <f>^dr (2.4) 

It is obvious that for degenerate solutions (E+-E.) two conditions should 

be met, namely: 

^11-^22 ' ^12-0 (2.5) 
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The above two conditions are independent of each other as it was 

originally suggested by Teller (1937) and proved beyond any doubt by 

Longuet-Higgins (1975). This cleared a confusion which was created by a 

series of papers by Naqvi and Brown (1972), Naqvi (1972) and Hoytink (1975) 

claiming that there is only one independent condition that should be 

satisfied in order for the two potential energy surfaces to cross. 

In a molecule of N atoms the energy is within the Born-Oppenheimer 

approximation a function of the 3N-6 internal coordinates (i.e. the 

internuclear distances); 

U  -  U  ( r ^ . r j ,  .  .  .  . r j ^ ^ )  ( 2 . 6 )  

This is generally a hypersurface in 3N-5 dimensions. Intersections of 

these hypersurfaces can occur in manifolds of varying numbers of dimensions 

ranging from 0 (intersection at a point) to 3N-7 (since there are two 

independent conditions). Further determination of the dimensionality of 

the manifolds along which potential energy hypersurfaces of the same spin 

intersect each other can be achieved by considering the following two cases 

as regards the symmetry of the two intersecting surfaces: 

(i^ Different symmetries: provided that spin-orbit terms are absent from 

the Hamiltonian, is identically zero which leaves only one condition, 

namely which should be satisfied in order for two potential 

energy surfaces of different symmetries to cross. In a diatomic molecule 

there is only one degree of freedom (the internuclear distance R^g) and by 

varying this parameter it is possible to locate a point in which two 
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potential energy curves having different symmetries can cross. For a 

polyatomic molecule there are in general 3N-6 degrees of freedom, therefore 

the hypersurfaces associated with electronic states of different symmetries 

can cross in manifolds of dimensions ranging from 0 to 3N-7. 

fii) Same svmmetries: in this case both conditions in equation (2.9) should 

be met in order for the two hypersurfaces to intersect. In a diatomic 

molecule this is not possible in general due to the fact that there is only 

one degree of freedom. Therefore diatomic potential energy curves of the 

same symmetry avoid rather than cross each other, a fact which is known as 

the non-crossing rule. This does not exclude however the possibility of an 

"accidental crossing" such as in the LCAO-SCF treatment of HeH^* by George 

and Morokuma (1973), or when there are other circumstances which allow the 

crossing of electronic terms having the same symetry such in the non-

relativistic Hg* (cf. Landau and Lifshitz, 1965). The above cases do not 

violate the non-crossing rule and can be considered as consequences of the 

rule rather than reasons for doubting it as it was pointed out by Mead 

(1979). In fact it is believed that if such a case is treated on a more 

accurate level of theory then the two curves will avoid each other rather 

than cross as it is happening in the relativistic treatment of Hg*. On the 

other hand in a polyatomic molecule of N atoms the presence of more degrees 

of freedom allows in principle two potential energy hypersurfaces of the 

same symmetry to cross in manifolds of dimensions from 0 to 3N-8. However, 

due to the higher dimensionality it is more difficult to detect 

intersections of potential energy hypersurfaces of polyatomic molecules. 

This fact has created the illusion that PES of the same symmetry always 

avoid each other even for polyatomic molecules despite Longuet-Higgins' 
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(1975) example of crossing of two electronic states having the same 

symmetry for a system of 3 dissimilar atoms in their ground states (i.e. 

Li, Na, K). However this was the only model to date and there have not 

been known so far any cases of real molecules that exhibit this phenomenon. 

In the present case the energy of the global ground state ^A' 

potential energy surface is a function of 3 coordinates (i.e. 3 angles or 

three bond lengths). Furthermore by assuming €2^ symmetry we impose an 

additional constraint to the system by keeping the two 0-0 bond lengths 

equal. The dimensionality of both l-^A^ and 2-^Aj^ potential energy 

surfaces is then reduced to two, the energy being a function of the 

coordinates X, Y (or their equivalent R). Furthermore since they have 

the same symmetry (a^) there are two conditions, namely - H22 and H22 " 

0 that should be satisfied in order for the two surfaces to cross. The 

quantities H22 and H2^2 the system of these two equations depend on 

the two coordinates X, Y (or R) of the surface in a rather complicated 

manner in general. In such a case the manifold of intersection of the two 

surfaces - if any - is of dimension 0 (i.e a point). The coordinates X^, 

Yg (or 4>ct Rg) of such a point should satisfy the system of equations 

(2.10). It should also be noted that it is possible in general that there 

exist more than one of these points at which the two surfaces touch each 

other. This is because the system of two equations (2.10) can have more 

than one set of solutions. This possibility is highly unusual due to the 

fact that the quantities H22 and H]^2 are in principle smooth functions 

of the coordinates X and Y but should not be excluded as impossible. In 

any case we are going to investigate if at the point denoted as "I" in 

Figure 2.3 there is a crossing of the two ^Aj^ surfaces since this point is 
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related to important features of the ring opening reaction surface being so 

close to the 62^ transition state. 

Figure 2.4 shows the energies of the two lowest surfaces as a 

function of ̂  for various cuts of the surfaces corresponding to different 

values of R. The energies of both states are obtained as a result of a 

state averaging calculation in which the two states are given equal 

weights. The value of R for which the energies are calculated as a 

function of 4> are Indicated below the curves. The numbers above the curves 

show the energy separation between the two states in /ihartree. In the 

domain 1.47 A 3 R 3 1.48 À the two states come together as close as 35 yh 

and away from that area their separation increases. Therefore the 

intersection point - if any - should lie in the above domain whereas the 

C2y transition state occurs when the maximum on the lower state potential 

energy curves passes through its minimum value in the domain 1.43 Â < R < 

1.45 Â. 

Before attempting to locate the intersection point it is necessary to 

definitively prove that it exists and make sure that the two surfaces do 

not really avoid each other at the last minute. For this purpose the 

following topological theorem which serves as a test for intersections and 

was proposed by Longuet-Higgins (1975) is used: Let S be any simply 

connected surface in nuclear configuration space, bounded by a closed loop 

L. Then if *(q;Q) changes sign when transported adiabatically around L, 

there must be at least one point on S at which #(q;Q) is discontinuous, 

implying that the potential energy surface intersects that of another 

electronic state. 

Two loops along the ridge on the ground state potential energy 
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surface of O3 are chosen: one enclosing the intersection point "I", the 

other not enclosing it. Their position on the (X,Y) coordinate frame is 

shown in Figure 2.5. The relative positions of the ^-constant and 

R-constant lines on this frame are also indicated. The shadowed area 

corresponds to the ridge on the PES across which the wavefunction rapidly 

changes character from the ring to the open structure. A total of 51 

points are computed on the loop enclosing the intersection. Most of them 

lie on the directon across the ridge since a continuous monitoring of the 

sign of the wavefunction in this direction is desired. In the direction 

parallel to the ridge only a few points are computed since in this area the 

wavefunction has the character of the ring or the open structure on either 

side of the ridge respectively. On the loop not enclosing the intersection 

a total of 8 points are calculated. The computed MCSCF wavefunction has 

four dominant terms all of them corresponding to configurations having 

doubly occupied molecular orbitals: two for the ring and another two for 

the open structure. Their relative magnitudes for the loop enclosing the 

intersection are plotted in Figure 2.6 against the distance along the path 

starting from point 1. It is worth noticing that moving around the loop on 

one revolution all h coefficients change sign. The relative sign of the CI 

coefficients is determined as follows: the change of sign in the dominant 

CI coefficient for the ring structure between points 36 and 40 in Figure 

2.6 is directed by the constant positive value of the dominant CI 

coefficient for the open structure in this region. Upon two revolutions 

the sign of the wavefunction returns to its original value. The analogous 

plot for the loop not enclosing the intersection point "I" is shown in 

Figure 2.7. All CI coefficients in this case return to their original sign 
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moving one revolution around the loop. The fact that the dominant CI 

coefficient for the ring structure does not change sign between points 2 

and 4 is again directed by the positive constant value of the dominant CI 

coefficient for the open structure in this area. It is therefore at this 

point definitively proved that there exists a point where the l-\^ and 2-

potential energy surfaces touch each other. This point lies inside the 

loop whose boundaries are indicated by the points 1 to 51 in Figure 2.5. 

Its exact location is yet to be determined. 

The fact that the intersection point lies very close to the Cj^ 

transition state poses the difficulty that a regular quadratic polynomial 

of the coordinates X and Y (or 4» and R) does not suffice for locating both 

the intersection and the transition state by means of a least mean squares 

fit. This is because the energy of the lower surface E. given by equation 

(2.3) contains the square root of the sum of the squares of the elements 

^11' ^22 ^12 which can be considered to vary linearly with the 

coordinates X and Y (or <t> and R correspondingly) in the neighbourhood of 

the intersection point. On the other hand around the transition state the 

energy of the lower state varies as a quadratic function of these 

coordinates. The energy of about 55 points in the domain 83.3° < <!> < 

83.8° and 1.42 A < R S 1.46 A is fitted to a regular quadratic polynomial 

by a least mean square fit to locate the transition state. The standard 

deviation of the fit is 1.37%. For the location of the intersection point 

the square of the energy difference between the two states is fitted to a 

regular quadratic polynomial in the domain: 1.46 A < R < 1.49 A and 83.0° 

< $ < 83.4° The number of points used in this fit is 50 and the standard 

deviation 1.76%. The two fits yielded the following values for the 
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internal coordinates of the transition 

respectively; 

Transition state : ^ -

Intersection point : — 

state and the intersection point 

83.574° , R* - 1.438 A 

83.180° . r' = 1.476 A 

In order to investigate whether the saddle point is the real transition 

state for the ring opening it is necessary to obtain the sign of the 

eigenvalue of the hessian along the symmetry breaking mode pointing at a 

direction away from the surface. For this purpose the energy is 

computed at a geometry having internal coordianates <i> — <f> - 83.574° R^ 

- rVo.01 - 1.448 A and Rg - R*-0.01 - 1.428 A. The 2 state-averaged MCSCF 

energy of the fitted transition state in Cgy is E - -224.46339315 which is 

5 ^ihartree higher than the corresponding value of the energy computed by 

optimizing only the lower state (i.e., without state avaraging). Upon 

asymmetric distortions of the two 0-0 bond lengths the symmetry of the 

system is lowered from Cgy to Cg and the two potential energy surfaces 

which had a^ symmetry in Cg^ now transform according to the a' irreducible 

representation of the Cg point group. The two (1-V' and 2-\' ) state-

averaged MCSCF energy of the new point with asymmetric bond lengths is -

224,463320356 (above E ) indicating that the curvature of the potential 

energy surface and therefore the corresponding eigenvalue of the hessian is 

positive along the symmetry breaking mode. This means that the fitted 

structure for the Cg^ saddle point is the true transition state for the 

ring opening on the full V' ground state potential energy surface. 

The next topic to be addressed is whether the ring opening reaction 
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path, its projection on the €2^ surface shown in Figure 2.1 as a function 

of ̂  for each value of which R is optimized, lies exclusively on the 

ground state PES. In order for this to be true it is necessary that 

the curvature of the PES is positive along the symmetry breaking mode going 

away from the Cgy geometry which minimizes the energy for each (f>. 

Additional MCSCF evaluations of the energy on the V' ground state 

potential energy surface for the values of ^ - 65° 70° 80° 85° 90° 

95° 100° and 110° with R asymmetrically varied by ±0.01 A from the 

corresponding value that minimizes the energy for each of the above 

values of <f> are performed. In all cases the energy of the asymmetrically 

distorted Cg geometry is higher than the corresponding minimum energy on 

the Cgy surface having the same <{>- This indicates that the minimum 

energy path lies at the bottom of a valley in the complete V' ground state 

PES. It is therefore concluded that the ring opening proceeds via a Cgy 

preserving path. 

F. Exploration of parts of the complete ground state ^A' PES 

1. Usefulness of the ground state PES 

As it was mentioned earlier the complete ground state PES is a 

hypersurface in 4 dimensions since the energy is a function of 3 internal 

coordinates: E - E((^,R^ .Rg). It was also established that all important 

features of the ground state PES which involve the ring and open 

structures, the transiton state for the ring opening as well as the path 

connecting these two minima all lie on the Cg^ subspace defined by the 

constraint R^ - Rg. However this Cg^ subspace is not sufficient for a 
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complete description of the Og dissociation process since it can only 

account for a dissociation channel along the €2^ preserving mode. This 

channel proceeds, starting from the open structure, on the bottom of a 

valley along which the 0-0-0 angle is continuously decreasing and the 0-0 

bond lengths are adjusted simultaneously. It has to overcome a barrier of 

53 kcal/mole in order to reach the ring minimum releasing at the same time 

23 kcal/mole. From the ring minimum this particular dissociation channel 

proceeds over a barrier of 32 kcal/mole on a path along which the central 

oxygen is pulled away ending up as 0(^P) while the two end oxygens come 

close together to form O2. The exothermicity from the ring minimum to the 

dissociation products is 23.5 kcal/mole. This is a very unlikely situation 

due to the existence of large barriers along the path shown in Figure 2.1. 

An alternative route for dissociation of O3 is along the €2^ symmetry 

breaking mode starting at the open minimum. Following this path one of the 

end oxygens approaches the central atom in order to form O2 while the other 

end oxygen departs ending up to 0(^P). The barrier along this path is most 

probably smaller than the one required for the 62^ preserving dissociation 

in which case the latter dissociation channel is favorable. It is also of 

interest to investigate the fashion in which the angle ^ changes along the 

Cg dissociation channel. However in order to do so various parts of the 

ground state ^A' PES should be investigated a fact which requires the 

energy evaluation at many more nuclear conformations. One additional 

computational difficulty lies in the fact that the wavefunction should 

resemble the overall symmetry of the complete PES (a' in Cg) therefore 

requiring additional terms to a total of 8029 configurations. 
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2. The panel for ^-116.31° 

One way of depicting the complete 4-dimensional ground state V' PES 

is through various 3-dimensional cuts (panels) on which the energy is 

plotted as a function of any two internal coordinates while the third one 

is kept constant. By choosing ^ as the coordinate which is held constant 

one obtains the stretching potentials for nuclear motion as a function of 

and Rg for each value of ̂ . The stretching potential as a function of 

R^ and Rg for <f> - 116.31° is shown in Figure 2.9. The potential rises 

from a shallow well (corresponding to the ground state minimum of 0%) 

smoothly to an atom-plus-diatomic channel along the valley corresponding to 

Oj + 0. An interesting feature of this potential not found in an analogous 

plot by Wilson and Hopper (1981) is that there exists a transition state 

along the dissociation channel for ^ - 116.31! Its internal coordinates 

are R^ - 1.233 A and Rg - 1.759 A and its energy E - -224.5282606 

hartree. The barrier of the dissociation process, keeping ^ fixed at 

116.31° is therefore 15.1 kcal/mol which is below the barrier needed for 

Cjy preserving dissociation. It is therefore at this point concluded that 

dissociation is favored along a Cg path rather along a Cgy path. 

The next step is to locate the real transition state of the 

dissociation along the Cg path in the surface. The gradient of the 

energy at the saddle point on the <f) - 116.31° panel has zero components as 

regards the R^ and Rg internal coordinates but a non-zero component as 

regards the bending angle 4, indicating that it is not a stationary point 

on the complete ground state PES. Furthermore the hessian of the energy 

computed at this point has only one negative eigenvalue indicating that it 

lies on the downhill reaction path from the true transition state. 
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Figure 2.8. Energy as afunction of the 0-0 bond lengths , R2 for 

1^-116.31! Increment; 5 mhartree 
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A transition state search going uphill on the direction of the negative 

eigenvalue of the hessian from the saddle point at the <j) «=• 116.31° panel 

yielded a structure having internal coordinates 4> = 114.90° = 1.234 Â 

Rg - 1.759 A and zero-gradient. Furthermore the hessian of the energy 

computed at this point has 2 positive (63.3 and 422.5 cm and one 

negative (96.3 cm"^) eigenvalues indicating that this is the true 

transition state on the complete ground state 'A' surface for the 

dissociation process along a Cg path. The barrier for the O3 dissociation 

is calculated to be 11.73 kcal/mol including the harmonic zero point 

energies of the open minimum and the O3 dissociation transition state which 

are 4.03 and 0.7 kcal/mol respectively. 

G. Conclusions 

A thourough examination of the ground state potential energy surface 

of O3 in the full valence space FORS MCSCF approximation using a 

wavefunction with as many as 4067 terms has revealed the existence of a 

ring species having Djj, symmetry. This minimum has a 0-0-0 angle of 60° 

and a 0-0 bond length of 1.470 A and lies 29.8 kcal/mol above the Cgy 

ground state which has an angle of 116.31° and a bond length of 1.299 A. 

More importantly it lies above the O3 dissociation limit which is 26.1 

kcal/mol (experimental value). The ring opening occurs along a path lying 

exclusively on the ground state ^A, PES therefore having Cgy symmetry. The 

transition state for the ring opening has an angle of 83.6° and a bond 

length of 1.440 A lying 26.0 kcal/mol above the ring minimum. In the 

neighbourhood of the transition state there exists a conical intersection 
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of the potential energy surfaces corresponding to the l-\^ and 2-

states. Its presence has been definitively proved by minitoring the sign 

of the MCSCF wavefunction on a closed loop around it. This is the first 

time that a conical intersection of two states having the same symmetry has 

been observed in a real polyatomic system. Furthermore the transition 

state for O3 dissociation is located on the ground state ^A' potential 

energy surface in the full valence space FORS MCSCF approximation (8029 

configurations). It corresponds to a structure having a 0-0-0 angle 

^=114.90° and asymmetric bond lengths - 1.234 A and Rg - 1.759 A. The 

barrier for O3 dissociation to Og + 0 in their ground states along the 

symmetry breaking mode is calculated to be 11.73 kcal/mol favoring the 

dissociaton along a Cg rather a Cg^ channel. Table 2.2 lists the internal 

coordinates, the energies and the assignment of all critical points on the 

ground state V' potential energy surface of O3. 
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Table 2.2. Critical points on the ground state ^A' PES of O3. 

r R, (A) R2 (A) E (hartree) Assignment AE® 

(Kcal/mol) 

116 .31 1.299 1, ,299 -224 .5523175 Open minimum 0.00 

60.00 1.470 1. 470 -224 .5041628 Ring minimum 29.82^ 

83, ,57 1.438 1. 438 -224. ,4633832 Ring opening T.S. 55.8 

116, ,31 1,233 1. 759 -224, ,5282606 Saddle point 15.10 

114, ,90 1.234 1. 759 -224, 5283207 T.S. for O3 dissociation 11.73b 

83. 18 1.476 1. 476 Intersection of 

l-^A, and 2-^^ PES 

with respect to the open minimum, 

including harmonic zero point energies. 
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III. POTENTIAL ENERGY SURFACE OF THE GROUND STATE OF COg 

A. Introduction 

Although carbon dioxide is a thoroughly studied molecule, being the 

end product of most combustion processes and G. Herzberg's (1966) book 

devotes more space to it than to any other triatoraic molecule, almost all 

accurate calculations to date pertain to properties of the linear form of 

the 'Sg* ground state, leaving the rest of the potential energy surface 

unexplored. These parts of the adiabatic surface may reveal the existence 

of additional metastable species which could serve as intermediates in 

chemical reactions and an examination of the surface may provide 

information regarding interconversions between them, pertaining to possible 

reaction mechanisms. A quantitative knowledge of the surface also provides 

the basis for dynamical calculations. 

For the chemical reaction of carbon with molecular oxygen, 

experimental data by Husain and Young (1975) suggest that C('p) reacts 

rapidly with Og, whereas the reaction of C(^D) with Og is not so fast 

according to Braum et. al. (1969) and Husain and Kirsh (1971). As regards 

the mechanism of this reaction, it is readily understood that an "end-on" 

attack of carbon on molecular oxygen gives an intermediate linear structure 

of the type C-O-O which then decomposes to CO + 0, whereas an alternative 

attack of carbon on the n bond of the molecular oxygen leads to an 

intermediate cyclic carbene-type COg isomer which rapidly opens up to the 

linear ground state according to Shevlin (1980). For the aforementioned 

processes the allowed electronic states of reactants and products are 
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subject to the Wigner-Whitmer (1928) rules and depend upon the relative 

energies of the various atomic and molecular electronic states (cf. Moore, 

1958). These constraints led Husain and Donovan (1970) in the construction 

of correlation diagrams connecting the states of C + 0% and CO + 0, They 

also suggest that possible intersections of the potential energy surfaces 

may exist. The latter can however be verified and determined only by 

exploring sufficiently large parts of the adiabatic potential surfaces of 

more than one electronic state. 

B. Method of calculation 

The reliable determination of global energy surfaces requires 

unbiased flexibility in the configuration mixing and orbital optimization. 

To this end, an MCSCF calculation in the full optimized valence space with 

an adequate basis set (sufficiently extended plus polarization functions) 

represents a very accurate approach. In the case of COg this requires a 

configuration space generated by allowing the 16 valence electrons to be 

rearranged among 12 reactive orbitals. Such a wavefunction possesses the 

flexibility needed to account for any configurational changes which may 

occur at various points of the surface. The remaining 5 electrons can be 

safely assumed to reside in the three closed Is core orbitals. The lowest 

spatial symmetry of the molecular system consisting of a carbon and two 

oxygen atoms is Cg and the number of configurations generated in the full 

valence space for the V' representation is 35793. However, since both the 

cyclic isomer to be discussed below as well as the linear structure of the 

ground state have Cgy symmetry, it is of interest to examine first the pare 
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of the energy surface describing the ring opening to the linear geometry 

under preservation of €3^ symmetry. Within this higher symmetry the grourid 

state belongs to the representation and the number of configurations is 

reduced to 18009. It is only in recent times that it has become possible 

to calculate large regions of energy surfaces in a configuration space of 

such magnitude with an extended basis set and very few have been reported. 

We use the Dunning and Hay (1977) basis set plus polarization 

functions consisting of the segmented contractions (9s5pld/3s2pld) on both 

carbon and oxygen. For the d-type polarization functions the exponents 

fg-0.75 and fg-O.SS are used for carbon and oxygen respectively. This 

choice of the basis set encompasses a total of 45 functions. All geometry 

optimizing calculations are performed using the GAMESS program by Dupuis 

et. al. (1980) while all other single point energy calculations are 

performed with the MOLPRO program of Knowles and Werner (1984). 

C. Mapping of the complete ground state V' PES 

The purpose of this study is to establish reliable information on the 

global ground state V' potential energy surface of COg. On this surface 

the energy depends on three variables, e.g. the O-C-0 angle <j> and the two 

C-0 bond lengths and Rg. Two-dimensional contour maps on which any of 

the above internal coordinates has a constant value depict cross sections 

through it. On these cross sections the energy is a function of the 

remaining two internal coordinates. The investigation proceeds in the 

following stages. First the optimal isosceles-triangle geometries having 

Cgy symmetry are calculated for the , Vg, and states as functions 
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of the single variable (f> by setting - R2 - R and determining the value 

of R which minimizes the energy for each The energy as a function of <f) 

in these curves depicts the Cgy constrained dissociation OCO ^ C + Og. 

Then the entire Cgy ground state surface is computed within the full 

valence space FORS MCSCF approximation as a function of the coordinates 

and R^ - Rj - R. This PES unveils the existence of a cyclic carbene-type 

metastable species and governs its constrained conversion to the linear 

ground state. Finally, energies are determined for various cross sections 

of the complete ground state PES which have R^ M Rg and therefore lower 

symmetry (Cg). The electronic wavefunctions in this case are also obtained 

by MCSCF calculations in the full valence space and have 35793 

configurations. Various cross sections corrsponding to ^ - 0° 94° and 

180° are also calculated. The first two correspond to the exchange of 0 

atoms with CO according to 

0„C(^S*) + Og(^D) - 0-C-0(\;^) ^ 0„(^D) + COg(^f ) 

at the various angles (p respectively whereas the last one to the colinear 

reaction 

C(^P) + OgC^') - CO(^S^) + 0(^D) 

Study of these cross sections provide useful insight in the understanding 

of the fcOg dissociation mechanism to various products while at the same 

time investigate the possibility that other metastable species 
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corresponding to different permutations of the nuclei among each other may 

exist on the ground state potential energy surface. 

D. The lowest singlet states in 

The potential energy curves for the and states of COg 

are shown in Figure 3.1. The energy is plotted against the O-C-0 angle <f) 

while at the same time the C-0 bond lengths are kept equal and relaxed by 

minimizing the energy for each value of 4>. All energies are computed in 

the full valence space FORS MCSCF level using wavefunctions with as many as 

18009, 17496, 17784 and 17496 configurations for the ^A^ ^Aj, ^B, and ^Bg 

states respectively. As it can be seen from Figure 3.1 there exist double 

minima on the Cjy potential energy curves for all states. Their internal 

coordinates and their relative energies with respect to the ground state 

minimum are shown in Table 3.1. These potential energy curves also 

describe the dissociation of the various states along a Cgy preserving path 

during which the central carbon is pulled away on the bisector of the 0-0 

bond while the two end oxygens come together to form Og in its ground 

state. The ^A,, Vg and ^B, states correlate with C and Og in their ground 

states respectively while the ^Bg state correlates with the ground state of 

Og('Sg ) and carbon in its first excited state as it is shown 

schematically in Figure 3.1 for small angles of ^. For <f) - 180° the 

correlation of the above states with the ground and excited states of 

linear COg is also indicated. It is worth noticing that the 3 singlet 

excited states of linear COg do not correspond to minima on the analogous 

potential energy surfaces. As Figure 3.1 indicates the 3 singlet excited 
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Table 3.1. Minima for the various Cgy states of COj 

State R <A) E (hartree) AE® (kcal/mol) 

180.00 

73.10 

1.176 

1.339 

-187.8526012 

-187.6333377 

0.0 

137.6 

127.01 

48.35 

1.272 

1.711 

-187.6497734 

-187.3913420 

127.3 

289.4 

\ 118.18 

49.61 

1.269 

1.604 

-187.6405622 

-187.4818999 

133.1 

232.6 

'̂ 2 94.67 1.363 -187.5463073 192.2 

with respect to the ground state minimum. 
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states of COg have Cjy rather than symmetry. 

The variation of the C-0 and 0-0 optimized bond lengths as a function 

of <f> is shown in Figures 3.2 and 3.3 for all singlet states in Cgy These 

plots monitor the fashion in which the internal coordinates change along 

the Cjy preserving dissociation paths for all singlet states. For small 

values of ̂  in Figure 3.3 they all end up in the same asymptotic limit 

(1.23 A) which is the 0-0 distance in 02(̂ 2  ̂) in the full valence space 

FORS MCSCF level of theory since they all correlate with the ground state 

of Og. 

E. The Cgy potential energy surface for the state 

1. The ring minimum 

As it can be seen from Figure 3.1 on the ground state surface 

besides the linear ground state there exists another minimum corresponding 

to a Cgy structure with an O-C-0 angle of #-73.1° and a C-O bond length of 

Rl - Rg - 1.339 Â lying 137.6 kcal/mol above the linear ground state. In 

order to establish whether this is a true minimum on the complete 

potential energy surface, the curvature of this surface away from the Cgy 

symmetry is investigated by computing the energy at a geometry having the 

same value of <f) (73.1° ) and unequal bond lengths one being the same and 

the other differing by -0.01 A from the corresponding ones of the ring 

structure. The MCSCF energy of this point (<f) - 73.10° R^ - 1.339 A, Rg = 

1.349 A) is -187.6332739 hartree which is higher than the energy of the 

Cgy structure, listed in Table 3.1, indicating that the latter is indeed a 

minimum on the ground state V' potential energy surface. 
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Table 3.2. Critical points on the Cg^ energy surface of COg ground state 

ĉ-o 
(Â)  

Energy 

(a.u.) 

Barrier AE 

( kcal/mol ) 

Method Reference 

Linear 

180 
Zg (D^) 
1.162 
1.153 

1.176 

1.156 

1.160 

-187.55972 

-187.85260 

-188.10544 

-188.31141 

exp. value 

SCF/[5s4p] 
MCSCF-18009 CSFs/DZP 

MP4/6-31G* 
MRCl''/[9s5p4dlf] 

Herzberg (1966) 

Pakansky et.al. (1975) 
Xantheas et. al. (1990) 

lilies et. al. (1987) 
Knowles et. al. (1988) 

Bent A, (Cg*) 
63.7 1.374 

68.7 
79.1 
79.1 

1.298 
1.298 
1.304 

73.1 1.339 

-184.93281 
-187.06714 
-187.46202 
-187.46252 
-187.49760 
-187.88320 
-187.92860 
-187.63334 

161.3 

111.3 
128.6 

136.8 
137.6 

SCF/ST0-3G 
SCF/4-31G 

SCF/Huzinaga [7s5pld] 
SCF/Huzinaga [7s6pld] 
MCSCF-2 config./DZP 

SD-CI/DZP 
SDQ-CI/DZP 

MCSCF-18009 config./DZP 

Lathan et. al. (1973) 
Lathan et. al. (1973) 
Xantheas et. al. (1990) 
Xantheas et. al. (1990) 
Feller et. al. (1980) 
FEller et. al. (1980) 
Feller et. al. (1980) 
Xantheas et. al. (1990) 

Cgy transition state 

97.8 1.298 

94.2 1.320 

0.5 

7.6 

9.0 
14.0 

MCSCF-2 config./DZP 

SD-CI/DZP 

SDQ-CI/DZP 

MCSCF-18009 config./DZP 

Feller et. al. (1980) 

Feller et. al. (1980) 

Feller et. al. (1980) 

Xantheas et. al. (1990) 

E(T.S) - E(bent minimum) 

E(bent minimum) - E(linear minimum) 
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The point having asymmetric bond lengths has Cg symmetry and requires a 

wavefunction with as many as 35793 configurations in the full valence space 

FORS MCSCF (a' irrep). 

The geometries of the two minima as well as that of the C2^ 

transition state for ring opening all lying on the ground state 

potential energy surface, together with results from some previous 

calculations, are listed in Table 3.2. Most previous calculations by 

Krauss and Neumann (1972), England (1981) and England et. al. (1976) did 

not discover the bent minimum because they did not explore the range at 

sufficiently small values of <f>. One three-configuration MCSCF calculation 

by Kombs and Lune11 (1983) in which the O-C-0 angle was varied from 

60'-180', failed to locate the bent minimum because the C-O distance was 

kept constant at the equilibrium value (1.162 Â) of the linear species. 

From the mentioned comparisons, the need for exploring large parts of the 

adiabatic potential energy surface using a level of theory which involves a 

large, unbiased configuration space and an extended basis set is apparent. 

2. PES governing the ring opening process 

Once the existence of the two minima on the ground state PES is 

established, it is desirable to investigate the mechanism of their 

interconversion. The ring opening process is governed by the ground state 

potential energy surface. Since the bent structure has C2^ symmetry and 

the linear ground state symmetry respectively, the ring opening can, as 

a first guess, be thought as occurring along a C2^ preserving path. Along 

this path the O-C-O angle ^ increases from 73.1' to 180' while at the same 

time the two C-0 bond lengths change but remain equal. The €2^ symmetry 
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Figure 3.4. Left Surface: Ab initio energy contours for the C2^ constrained ring opening of 
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restricted potential energy surface of COg is depicted by the energy 

contours on the left hand side of Figure 3.4, where the coordinates are the 

0-0 distance (abscissa x) and the perpendicular distance of the C nucleus 

from the 0-0 line (ordinate y) . About 130 points of the surface are 

determined and the energy contours are plotted with an increment of 20 

mhartree. For each of these points an MCSCF calculation is carried out in 

the 18009 dimensional configuration space, consuming approximately 5 hrs. 

of Cray-2 CPU time on the average. L corresponds to the linear ground 

state, B to the bent minimum and S to the Cgy restricted transition state. 

The same coordinate system was used by Herzberg (1966, p.436) in an 

analogous plot of the same surface which is shown on the right hand side of 

Figure 3.4. It was constructed by Pariseau et. at. (1965) from 

experimental data by assuming an anharmonic potential expanded in Taylor 

series up to fourth-order terms and it does not exhibit a minimum other 

than the linear structure. 

3. Location of the ring opening transition state 

The Cgy restricted saddle point, denoted as S in figure 3.4, has the 

internal coordinates ^ (OCO) - 94.2° - Rj - R (CO) - 1.320 A and energy 

E - -187.6109265 hartree lying 14.0 kcal/mol above the ring minimum. The 

hessian matrix evaluated at this point has two negative eigenvalues, one 

corresponding to the ring opening under preservation of Cjy symmetry, shown 

in Figure 3.4, the other one corresponding to a distortion from Cg^ to C^. 

An MCSCF calculation in Cg symmetry (35793 configurations, a' irrep) at the 

neighboring point; 

(^ - / - 94.2° R^ - R%0.015 Â - 1.335 A, Rg - R"-0.015 A - 1.305 A) 



www.manaraa.com

57 

which represents an asymmetric stretch for fixed 0 - ̂  , yields an energy 

of -187.6111919 hartree which is indeed lower than E . The possibility of 

* * 

an accidentally missed lower lying solution at the point («^ , R ) is 

excluded by a full valence space MCSCF calculation at this point assuming 

only Cg symmetry and starting with the molecular orbitals from the 

aforementioned distorted geometry. The calculation yields the same 

orbitals and energy as the restricted calculation. This result 

indicates that the transition state of the ring opening has Cg rather than 

Cgy symmetry, corresponding to a structure with unequal C-0 bond lengths. 

Accordingly, full valence space MCSCF calculations are made in Cg symmetry 

(involving a wavefunction with 35793 configurations) to determine 

E(R^,R2;^) for various fixed angles. The energies in the following domain 

of the ground state PES; 

90' < <f> < 94' - 1° 

1.35 A < R, < 1.50 A, AR, - 0.05 A 

1.20 A £ Rj < 1.30 A, ARj - 0.05 A 

are computed in the full valence space FORS MCSCF approximation with a 

wavefunction having 35793 terms. By fitting these energies to a regular 

quadratic polynomial with respect to the variables ^, R^ and Rg the 

transition state is located at - 91.706° R^° - 1.243 A, Rg - 1.406 A 

having an energy of E°--187.61411841 hartree which corresponds to a barrier 

of 12.1 kcal/mol with respect to the ring minimum. The Cg barrier is =15% 

(3 mhartree) less than the Cg^ restricted barrier. The quality of the fit 

is measured by the magnitude of the mean square deviation which is 2.0%. 
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This result is at variance with conclusions reached by Feller, Katriel and 

Davidson (1980) on the basis of MCSCF calculations involving only 2 

configurations, namely that the transition state for ring opening has C2^ 

symmetry. We believe that the distortion is related to an intersection 

between the and a surface in the vicinity of the transition state 

since both surfaces transform according to the a' irreducible 

representation when the symmetry is lowered to Cg. 

P. Exploration of the complete ground state PES E(^,Rj^,R2) 

1. Introduction 

As it is previously noted the energy on the complete ground state ^A' 

surface of CO2 within the Born-Oppenheimer approximation depends on 3 

coordinates which can be chosen among any of the 3 angles, the 3 bond 

lengths or their combinations. By keeping any of the 3 internal coordinates 

fixed one obtains a 2-dimensional cut of the complete surface on which the 

energy depends on the remaining two internal coordinates for that fixed 

value of the third one. The choice of the internal coordinates on which 

the energy depends on is by no means unique in the sense that an arbitrary 

combination of any of the coordinates can be used. For example an 

alternative choice of the coordinates on which the energy of the complete 

ground state PES depends on is R+ " and R_ - (R^ -

where ^ is the O-C-0 angle and Rj^, R2 the two C-0 bond lengths 

respectively. In such a case the R. - 0 plane represents the situation 

where the two bond lengths are equal and the overall symmetry is therefore 

C^y. The energy on the R. - 0 plane depends on 4> and R^ ( which is equal 
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to - R2) only and governs the motion of the nuclei upon preservation of 

C2y symmetry whereas points having R. ̂  0 represent asymmetric distortions 

away from €2^ symmetry. It is obvious that any combination of the 2 

remaining coordinates and R^) can be used in order to depict the energy 

on the R. - 0 plane, A typical example is already illustrated in Figure 

3.4 where the energy is plotted as a function of R - Rq.q and 

Y - Rq.q«COS(^/2) on the R. - 0 plane. 

Different coordinate systems can be selected in order to show the 

variation of the energy on various 2-dimensional cuts of the complete 

potential energy surface while at the same time describing the various ways 

that the 3 nuclei can approach each other in order to form stable molecular 

systems as well as the various building blocks of these molecules in their 

appropriate electronic states. The advantage of choosing bond lengths as 

coordinates to describe the 2-dimensional cuts of the complete surface is 

that they can illustrate bond formations and breakings as well as the 

various dissociation channels leading to different fragments. The 

electronic states of the latter are derived by the extension of the Wigner-

Whitmer (1928) rules in relating the states of a polyatomic molecule to the 

states of its fragments. For the system in hand the correlation diagram 

connecting the various electronic states of all possible fragments is shown 

in Figure 3.5. The ground state of C(^P) and both being triplets 

correlate with the ground state of CO(^Z^) and 0(^P) through a triplet PES 

in Cg which however does not include the ground state CO2 which is a 

state. The latter correlates on one end to the ground states of C and O2 

but to 00(^2"*") and 0 in its first excited state ^P on the other end through 

a ^A'+^A" PES as indicated in Figure 3.5. Since it is of interest to 
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Figure 3.5. Diagram correlating the various electronic states of C and Og with these of CO and 0 
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investigate the various dissociation channels of the ground state of COg, 

only parts of the complete singlet ground state are going to be calculated 

in Cg symmetry. 

2. The panel for ^ - 94° 

As a supplement to the discussion of section D.3 which described the 

location of the Cg ring opening transition state having asymmetric C-0 bond 

lengths the panel depicting the variation of the energy with and Rg for 

^ - 94.2° is calculated. The purpose of choosing this particular value of 

<t> is becuase it corresponds to the restricted saddle point S shown in 

Figure 3.4. The variation of the energy, its contours drawn with an 

increment of 5 mhartree, with the two C-0 bond lengths R^ and Rg is shown 

in Figure 3.6. The diagonal line represents all geometries having equal 

bond lengths and therefore Cg^ symmetry. The Cg^ symmetry restricted saddle 

point S of Figure 3.4 is also indicated on this line. It is obvious that 

although it is a minimum on the Cg^ line this is not the case on the 

complete surface. The existence of the two minima, indicated as m on 

Figure 3.6 and lying 5 mhartree below S , at positions symmetric with 

respect to the Cg^ line, suggest that S is not really a saddle point on 

the complete singlet ground state PES since the hessian of the energy 

evaluated at this point has two negative eigenvalues: one along the 

direction corresponding to the change of the O-C-0 angle (f> as shown in 

Figures 3.1 and 3.4 and a second along the Cg^ symmetry breaking mode 

corresponding to asymmetric C-0 bond lengths. The hessian of the energy at 

these two minima m has all positive eigenvalues on a <f) - constant panel. 

However the energy of this minimum passes through a maximum value for 
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Figure 3.6. Variation of the energy with respect to the two C-0 bond 

lengths for (j> - 94.2° Contour increment; 5 mhartree. 

S*: Cg^ restricted saddle point, m: minimum 
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4> - 91.706° and the location of the minimum for this value of <j> on the 

(R^.Rj) plane is R, - 1.243 A and Rg - 1.406 Â. This correponds to the 

computed in section D.3 transition state of the ring opening having 

asymmetric bond lengths since the hessian of the energy at this point has 

only one negative eigenvalue. 

The fact that the computed ring structure of COg is a real minimum on 

the Cg surface means that on an analogous panel depicting the energy 

variation with R^ and Rg, on which <f> - 73.10° there is only one minimum 

which lies on the line corresponding to symmetry. The ring opening 

process starts on a path along which the two C-0 bond lengths are equal. 

As 4) increases the eigenvalue of the hessian corresponding to asymmetric 

distortions of the C-0 bond lengths gradually lessens until it becomes 

zero. This happens for 4 - 90° as it is illustrated in Figure 3.7 with 

the presence of a minimum which is elongated along the perpendicular to the 

Cgy preserving direction. After this value of <}> there appear two minima at 

symmetric with respect ot the line positions. The energies of these 

minima pass through a maximum value as ^ increases. This is the transition 

state for the ring opening process. After the transition state there is a 

point where there exists an intersection of the surfaces corresponding to 

the V, and the states. Both states transform according to the same 

irreducible representation (a') as the symmetry is lowered to Cg. This 

intersection occurs in the domain 95.25° < ̂  < 96.25? An enlargement of 

the intersection domain of the states and ^B^ is shown in more detail in 

Figure 3.8 where the optimized values of R for both states are also 

indicated in parentheses. After the intersection area (i.e. for (p > 97° ) 

the ring opening proceeds with the increase of ^ along a valley with 
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Figure 3.7. Variation of the energy with respect to the two C-0 bond 

lengths for 4 - 90° m: minimum 
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respect to and Rg down to the linear ground state. MCSCF calculations 

at points corresponding to asymmetric distortions by ±0.001 A from the Cgy 

optimized values for the C-0 bond lengths are preformed for ^ - 100° 

110° 120° 130° 140° and 160! They all yield energies which are higher 

than the corresponding ones for the Cgy geometries shown in Figure 3.1 

suggesting that the reaction path lies In the bottom of a valley in the 3-

dimensional surface as <f> increases to 180° 

Figure 3.6 also corresponds to the exchange of 0(^D) atoms with 

C0(^Z*) the oxygen atom approaching and departing at an angle of 94.2° with 

respect to the CO molecule. The upper left part of the surface corresponds 

to the entrance channel while the lower right part to the exit channel. 

The barrier of the 0('d) absorption is =15 mhartree (9.5 kcal/mol) and 

there exist a minimum at = 1.24 A and Rg - 1.41 A for this angle of 

approach of the oxygen atom. 

3. The panel for </) - 180° : colinear approach of 0(^D) to C0(^2*) . 

The fact that the barrier of 0(^D) absorption at ^ - 94.2° is of the 

order of 10 kcal/mol indicates that there might be another direction along 

which the 0('d) approaches the ground state of the CO molecule from the 

carbon side with a lower barrier. The preferred angle of approach of the 

oxygen atom - if any - should also result in the formation of a stable 

species on the ground state surface which is most probably the linear COg 

species. It is therefore desired to compute the barrier of oxygen 

abstraction to CO upon colinear attack of the former to the latter from the 

carbon side and compare it with the previously computed barrier for 4> -

94.2! 
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Experimental data by Harding, Weston and Flynn (1988) and Zhu and 

Gordon (1990) suggest that the quenching of 0(^D) by CO(^Z*) yields 0(^P) 

and CO in its ground state in apparent violation of spin multiplicity 

rules. Isotopic labeling studies of Harding et. al. (1988) establish that 

the nonadiabatic reaction proceeds through a long-lived COg collision 

complex. Shortridge and Lin (1976) suggest that the dissociated 0(^D) + 

CO(^Z*) state correlates adiabatically with 'CO2 (^Ag ^Bg) via a V" 

surface. The quenching of 0(^D) proceeds upon formation of a singlet COg 

species in its state from which surface crossing to the state occurs 

in order to form 0('p) + €0(^2*). Zhu and Gordon (1990) have given the 

energy diagram depicting the energy levels of the various states of COg 

indicated in Figure 3.9. The complex-formation mechanism given for 0(^D) 

+ C0(^S*) is also demonstrated by the observation made by Shortridge and 

Lin (1976) that the absolute rate of C^'o formation in the following ^Re­

labelled experiment; 

'̂o(̂ D) + Ĉ ®0 -* Ĉ Ô + ̂ ®0('p) 

is 50% of that measured in the ^^O(^D) + C^^O reaction. It is therefore 

clear that the ^'0C^®0 complex is involved in the reaction which produces 

C^^O and with equal probabilities. However the crossing of the singlet 

and triplet surfaces is not going to be investigated in this study. 

The panel for the colinear approach of 0(^D) to CO(^Z*) is shown in 

Figure 3.10. The contour increment is 25 mhartree and the minimum having 

- Rg - 1.176 À corresponds to the linear COg. The exothermicity of the 

oxygen absorption to form linear COg is 152.8 kcal/mol (6.63 eV) as 
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ENERGY DIAGRAM FOR THE 
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Figure 3.9. Energy diagram for the system 0 + CO = CO; 
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Figure 3.10. Variation of the energy with respect to the two C-0 bond 

lengths for (p-l&O". Increment: 25 mhartree. S: saddle point 
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compared to the experiraantal value of 7.41 eV reported by Okabe (1978), 

Figure 3.10 suggests that there exists a very small barrier for the 

colinear oxygen abstraction of oxygen which is of the order of 1 kcal/mol. 

The computed saddle point on the surface has internal coordinates -

1.13 A and Rg - 2.90 A. Taking into account that the full valence space 

FORS MCSCF calculations are within chemical accuracy (< 2 kcal/mol) with 

experimental results, the oxygen abstraction might be considered as 

proceeding without a barrier along a colinear direction to the CO molecule 

from the carbon side. The fact that the 0(^D) deactivation by CO should 

not exhibit a significant activation energy was also suggested by Davidson 

et. al. (1978) by analogy with the isoelectronic 0(^D) + Ng system. 

Finally, Tully (1975) has calculated the 0(^D) deactivation rate constant 

to be 3x10 cmVniolecule• s at 300 K using a statistical model. 

4. The panel for ^ - 0° : colinear C(^P) + 02(%') - CO('s^) + 0(^D) 

By fixing the O-C-0 angle <f) at 0° the 2-diraensional cut of the 

complete ground state surface depicts the colinear reaction of carbon and 

Og. The diagrams in Figure 3.5 indicate that the ground states of both 

carbon and Og correlate with the ground state of CO and 0(^D) through a 

singlet surface. A subspace of this surface on which all nuclei lie always 

on a line is shown in Figure 3.11. The minimum at R^ - 1.696 A and Rg -

1.149 A corresponds to a stable linear Intermediate of the type C-O-O which 

is a minimum on the complete ground state singlet surface since it is 

stable upon variation of the C-O-O angle. The increment of the energy 

contours in Figure 3.11 is 20 mhartree. The stable C-O-O intermediate 

dissociates through a barrier of 4.1 kcal/mol to the CO + 0(^D) asymptote 
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Figure 3.11. Variation of the energy with respect to the two C-0 bond 

lengths for - O! Increment: 20 mhartree. S: saddle po 
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which lies 5.3 kcal/mol below it. The saddle point of this dissociation 

(denoted as S in Figure 3.11) has bond lengths = 1.14 À and R2 = 1.47 

A. The existence of the C-0-0 species has been speculated by Dubrin et. 

al. (1964) as an intermediate in the reaction of C with Og. They have also 

estimated the exothermicity towards CO + 0(^D) formation to be 138 

kcal/mol. Our value for this quantity is 105 kcal/mol in the full valence 

space FORS MCSCF approximation. Upon reaction of C with Og, CO rather than 

COg seems to be the dominant product (> 97%) even in the liquid phase as 

suggested by Brown and coworkers (1969). They estimated that the rate for 

the reaction producing CO is 3.3x10 cm'/molecules»s. 

G. Conclusions 

The existence of a carbene-type ring structure of COg on the ground 

state potential energy surface is established by means of ab-initio full 

valence space FORS MCSCF calculations with an extended basis set. The Cg^ 

restricted potential energy surface govering the ring opening process to 

the linear minimum is also computed in the same level of theory. The 

transition state for the ring opening path is however found to lie off the 

Cgy surface having asymmetric C-0 bond lengths. Parts of the complete 

ground state ^A' potential energy surface corresponding to various ways 

that the 3 nuclei can interact with each other are also computed. It is 

found that the preferred approach of the 0('d) to CO is colinear having a 

negligible barrier (=1 kcal/mol). The 2-dimensional cut of the complete 

ground state PES corresponding to the colinear attack of C(^P) to the 

ground state of Og is also computed. It reveals the existence of a 
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metastable species having a linear C-0-0 structure which dissociates to 

ground state CO and 0(^D). 
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IV. THE RING OPENING OF CYGLOPROPYLIDENE TO ALLENE 

A. Key Regions of the Reaction Surface 

1. Introduction 

The mechanism of the ring opening of cyclopropylidene to aliéné 

represents a prototype reaction for bond fission of a cyclic carbene due to 

ring strain. Because of the consequential roles played by carbenes as well 

as by strained rings as reaction intermediates, this isomerization has 

fundamental implications for many organic reactions, including combustion 

phenomena. 

Due to the reactant's very short life, the experimental study is 

extremely difficult. Previous theoretical results have suffered from 

various methodological shortcomings. This is due to the fact that the 

potential energy function depends on 15 internal coordinates and the 

various reaction paths are difficult to visualize in this multidimensional 

space. Valtazanos, Elbert, Xantheas and Ruedenberg (1990) have furnished a 

global overview over the potential energy surface governing the ring 

opening of cyclopropylidene to aliéné in terms of three internal 

coordinates, namely the ring opening angle $ and two dihedral angles and 

^2 which describe the rotations of the two CH2 groups with respect to the 

CGC plane. The remaining 12 internal coordinates were relaxed by energy 

minimization for every triple. Their choice as regards the set 

of the 15 internal coordinates is shown in Figure 4.A.I. Limitations in 
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3 x 7 - 6 = 1 5  I N T E R N A L  C O O R D I N A T E S  I N  H g C C C  H g .  

— BOND STRETCH (6), -^VALENCE ANGLE BEND (5), 

OUT OF PLANE BEND (2), DIHEDRAL ANGLE 

OF ROTATION OF CH2 PLANE vs. C3 PLANE (2) 

Figure 4.A.I. Definition of the 15 internal coordinates of CjH^ 
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computational power dictated the use of a minimal basis set and a small 

full configuration space to accomplish this overview. 

While ST0-3G bases are known to yield reasonable geometries in 

general, and in particular in the case of hydrocarbons as suggested by 

Dykstra and Schaefer (1980), it is also known that extended basis sets 

better describe strong jr-bonds, such as occur in aliéné, and that 

polarization functions will lead to stronger bent bonds in rings, such as 

occur in cyclopropylidene. Moreover, as it was pointed out by Ruedenberg 

and Sundberg (1976), the lack of flexibility in the minimal basis set tends 

to overestimate activation energies. Less serious is presumably the other 

limitation, namely the choice of the full space of 20 configurations 

generated by four electrons distributed over four "reactive" orbitals (two 

on the central carbon and one on each end carbon) between which electrons 

are rearranged to break bonds and form different bonds. The reaction 

orbitals as well as the numbering of the atoms are depicted schematically 

in Figure 4.A.2 for the reactant and the product respectively. 

The purpose of this study is to determine how closely the results 

reported by Valtazanos, Elbert, Xantheas and Ruedenberg (1990) approximate 

the actual potential energy surface. In order to answer this question and 

to obtain reliable quantitative values regarding the ring opening 

mechanism, the investigation of Valtazanos et. al. (1990) is complemented 

by recalculating key regions on the energy surface using extended basis 

sets and enlarged configuration spaces. In particular, we examine the 

reactant cyclopropylidene, the product aliéné, the region around the ring-

opening transition state, the ring opening reaction path, the aliéné 

isomerization reaction path, and also the isoenergetic shelf corresponding 



www.manaraa.com

77 

Figure 4.A.2. Qualitative sketch of the reactive orbitals |0>, |0'>, 

I2> in cyclopropylidene and aliéné 
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to the cogwheel-like synchronized rotation found for the two CHg groups. 

The results indicate that the previous calculations of Valtazanos et. al, 

(1990) provide a correct picture of the global potential energy surface. 

The topography around the transition state requires however a significant 

qualitative correction and that the quantitative value of the ring-opening 

barrier is considerably lowered. A new feature found is that the 

bifurcation occurs after the transition state, close to a conical 

intersection on the steepest descent path. 

2. Method of calculation 

2.1. Scope of calculations. 

In the reduced reaction surface the energy is a function of the 3 

internal coordinates <t, and (g. The number of energy calculations 

required for the reproduction of the entire reduced energy surface is of 

the order of 25 panels x 50 points/panel x 10 searches/point x 10 

iterations/search - 125,000 MCSCF iterations, where we have used average 

values of 10 searches/point on the reduced energy surface to optimize the 

remaining 12 internal coordinates, and 10 iterations to converge each MCSCF 

energy calculation. A panel is a 2-dimensional cut through the 

3-dimensional reduced energy surface where the energy is expressed as a 

function of the two dihedral angles 5^ and S2 for a constant value of $. 

Additional CPU time is required for the evaluation of the gradient of the 

energy with respect to the nuclear coordinates in order to optimize the 12 

remaining internal coordinates for each .fg) triple. The number of 

gradient evaluations is (25 panels) x (50 pts/panel) x (10 searches/pt.) x 
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(1 grad./search) - 12,500 gradient evaluations. Table A.A.I lists the 

estimated CPU times needed to carry out these calculations for the ST0-3G 

basis and for an extended basis within the original FORS space (20 

configurations) using the GAMESS program on various computers. Since the 

calculation of the entire surface for the extended basis is unrealistic due 

to the extensive CPU time which is required for this purpose, only the 

aforementioned key regions are investigated by the more accurate 

procedures. 

2.2. Basis Sets. 

The following basis sets were used to improve the quality of the 

calculations beyond that of the ST0-3G basis (Basis i): 

Basis (ii): A Dunning-Hay (1971) basis set plus polarization functions 

on Carbon consisting of the segmented contractions 

(9s5pld/3s2pld) for Carbon and (4s/2s) for Hydrogen. For 

the polarization function on Carbon the exponent Çg=0.75 was 

chosen. 

Basis (iii): The basis set of (ii) plus p-type polarization functions on 

Hydrogen with exponent ç„-1.0. 

Basis (iv): An even-tempered Gaussian basis of double-zeta quality 

contracted by the scheme (14s7pld/3s2dlp) for Carbon and 

(6s/2s) for Hydrogen, with the Hydrogen exponents scaled by 

1.2. The d polarization function exponents were the same as 

those for basis (ii). 

These basis sets contain 106, 118 and 147 primitive atomic orbitals, 

contracted to 53, 65 and 53 quantitative basis orbitals respectively. 
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Table 4.A.I. CPU time needed to compute the entire reduced energy surface^ 

Machine ST0-3G Dunning-Hay^ 

VAX-11/780 0.60 40.00 

FPS-164 0.12 6.13 

SCS-40 1.25 

CRAY-l/XMP 0.43 

in CPU years using the GAMESS program. 

^: projected time. 
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The geometry optimizations of the reactant, transition state, product 

and the aliéné isomerization transition state were performed with basis 

sets (ii) and (iii) using the GAMESS program by Dupuis, Spangler and 

Wendoloski (1980). The calculations with the large even-tempered Gaussian 

basis (iv) set were performed using the ALIS program by Elbert, Cheung and 

Ruedeneberg (1980). 

2.3. Configuration Spaces. 

The original full configuration space of 4 electrons in 4 reactive 

orbitals (two on the central carbon and one on each end carbon), hereafter 

referred to as FORSl, consists of the following 20 configurations: 

A { Core10^1^> ©q )/2 A { Core|0^2^> Sq )/2 

A { Core|0'^l^> Gg ) / 2  

A { Core 10^0'^> Sq )/2 

A { Core 10^0'1> Gg )//2 

A { Core|0'^01> Gq )//2 

A { Core|cfl2> Gq )/h 

A { Core 11^00'> Gq )//2 

A { Core 11^0'2> Gq )//2 

A { Core|2^01> Gq )//2 

A { Core|00'12> G, ) 

A ( Core|0'^2^> Gq )/2 

A  {  Co r e | 1 ^ 2 ^ >  G g  ) / 2  

A { Core|0f0'2> Gj, )//2 

A { Core|0'^02> Gq )//2 

A { Core|0'^12> Gq )//2 

A { Core|1^02> Gq )//2 

A { Core|2^00'> Gq )//2 

A { Core|2^0'l> Gq )//2 

A { Core|00'12> G, ) 

2 2 2 9 9/2 
where Core - c^ ...C, (afi-fia) /2 , c^...Cp the core orbitals 

Gq - (Q/3-/9a) (a/9-/3a)/2 singlet coupling 

6̂  - {aa/9/9+/9/9aa-(a/9+/Sa) (a/9+/9a)/2 )/3 triplet coupling 

A - antisynunetrizer 
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This space was used to optimize the geometries of the reactant, product and 

transition states using the extended basis sets (ii) and (iii). In order 

to get an indication for additional correlations among these four 

electrons, CI calculations were performed for these optimized geometries in 

the space of the 13700 configurations generated by taking all single and 

double excitations from the SCF wavefunction to the MCSCF reactive and 

virtual orbitals. 

Next, the set of orbitals which generate the full active space was 

extended to include four additional molecular orbitals, namely a CC-a-

bonding MO and a CC-a-antibonding MO in each of the two CC-bonds. The 

resulting FORS space (F0RS2), arising from distributing eight electrons 

over eight orbitals in all possible ways is spanned by 1764 configurations. 

(In the previous 20-dimensional FORS space, the CC-a-bonding MO's had been 

doubly occupied core orbitals whereas the CC-a-antibonding MO's had 

remained unoccupied,) This enlargement of the full configuration space is 

intended to account for correlation changes in the CC-a-bonds whose lengths 

do change during the ring opening, in contrast to the rather invariant CH 

bonds. 

Starting orbitals for the two CC-a bonding MO's were obtained by 

localizing the core orbitals of the previous 20-confIguration FORS 

calculation, using the Edmlston-Ruedenberg (1963) procedure. This 

localization separates the core MO's into three carbon Is shells, four CH 

bonds and two CC bonds. Starting orbitals for the CC-a-antibonding MO's 

can be similarly obtained by localization of the virtual orbitals of the 

previous calculation which separates the CH antibonds from the CC 

antibonds. Since the regions investigated here have either Cg or Cgy 
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symmetry, localization within each symmetry species only is sufficient to 

achieve the desired separations in space between CC bonds and CH bonds, and 

this was done for the core orbitals. Moreover, an inspection of the 

virtual orbitals revealed that two of these MO's had already the desired 

CC-antibonding character approximately and they were chosen without further 

localization as MCSCF starting orbitals. After completion of the MCSCF 

optimizations in the enlarged FORS space, all optimized orbitals were 

examined and it was found that the new MO's had indeed the desired CC-ct 

bonding and antibonding character. Thus, the correlation improvement had 

not moved into the CH bonds. 

For all choices of the coordinate triples 8^,82) for which the 

1764 configuration wavefunction was determined, the geometries of the 

twelve secondary internal coordinates were reoptimized using the basis set 

(ii) as had been done for the 20 dimensional FORS space. 

Table 4.A.2 gives a summary of the theoretical and computational 

methods used and how they will be referred to in the sequel. For example, 

(FORSl/ii) means a 20 configuration calculation with basis set (ii). 

3. Critical Regions 

3.1. The ring opening transition state 

The region around the ring opening transition state is the main place 

among the key regions on the potential energy surface where the results of 

the more accurate calculations differ from those of Valtazanos et. al. 

(1990) comouted with the ST0-3G minimal basis set in more than quantitative 

detail. We therefore begin by discussing this region. 
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Table 4.A.2. Theoretical and computational methods 

Internal Coordinates Caiculational Procedure 

Method <5,5^,^2 Other 12 AO basis FORS space Optimization 

1® Entire surface Optimized MBS(ST0-3G) 20 MC-SCF 

2 Critical points Optimized DH + d on C 20 MC-SCF 

3 Critical points Optimized DH + d on C 20 MC-SCF 

+ p on H 

4 Critical points From 2 Even tempered 20 MC-SCF 

5 Critical points From 2 DH + d on C 13700 CI 

6 Critical points From 2 DH + d on C 1764 MC-SCF 
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In the calculation with the ST0-3G basis set (FORSl/i) the reaction 

path bifurcated, breaking Cg symmetry, before the transition state. There 

were thus two transition states, both of symmetry and being each other's 

mirror images with respect to the C, mirror plane perpendicular to the CCC 

plane. However the deviation of these transition states from Cg symmetry 

was only small and, more importantly, the energy changed only little on a 

path leading from one of these transition states to the other, the maximum 

occurring at the midpoint which has Cg symmetry, i.e. at the Cg-average of 

the two transition states. The energy of this "average transition state" 

lies only 0.2 Kcal/Mole above that of the two transition states having C^ 

symmetry. While the reliability of such a detailed prediction by a ST0-3G 

based calculation was clearly open to question, it seemed likely that the 

actual energy surface would indeed be quite flat in this entire region. 

In view of this feature, it was furthermore likely that the 

transition state would shift in a more accurate calculation and the first 

question of interest was therefore to establish the location of the 

transition state obtained by such a calculation. Thus, using the extended 

basis (ii) and the original 20-dimensional FORSl space, a transition state 

search was initiated at one of the transition states computed with the STO-

3G basis set. This search led to a moderate displacement of this 

transition state. While the ring opening angle $ was virtually unchanged, 

the two CHg rotation angles 6, and fig were changed by about 6°. All 

internal coordinates are listed in row 6 of Table 4.A.3. These relatively 

minor changes in 6^, fig were however sufficient to yield a transition state 

which has Cg symmetry. 
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In order to confirm this result, we determined, at this level of 

theory, a part of the potential energy surface in the transition state 

region. Figure 4.A.3 displays the results of this calculation. Energy 

contours are depicted in terms of the coordinates 6^ - [(5^ + " 90°]» 

S.  -  (S^-S2) /2 ,  for a constant value of $. Three panels are given 

corresponding to * - 82°, 84.45°, 87°. The contours are drawn in 

increments of 0.5 mh. Each panel is based on 21 calculated energy values. 

For each of these, the remaining 12 internal coordinates are optimized as 

mentioned before. It is seen that, for each panel, the minimum lies on the 

axis - 0 which corresponds to geometries which have Cg symmetry. 

Furthermore, the value of this minimum energy for constant $, considered as 

a function of $, has a maximum for $ - 84.45°. This point is therefore 

indeed a transition state, Diagonalization of the Hessian matrix at this 

point confirms this conclusion by yielding 14 positive eigenvalues and one 

negative eigenvalue describing a Cg preserving displacement corresponding 

to the reaction coordinate. 

The simplest interpretation of these results is that, for the 

potential energy surface obtained by this type of calculation, the reaction 

path does not bifurcate before the transition state. Rather a Cg 

preserving channel leads from the reactant up to and across the transition 

state and the reaction path bifurcates thereafter. These conclusions were 

confirmed by calculating the steepest descent paths from the transition 

state to the reactant and towards the products. They will be displayed and 

discussed in Section 4.A.4. 

In order to be sure that these conclusions remain valid for 

wavefunctions of higher accuracy, two further transition state searches 
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En, = -115.80341 = -115.80219 E  ̂ = -115.80376 ~ 

Eg = -115.78766 Eg = -115.79029 Eg = -115.79293 

(Transition State) 

Figure 4.A.3. MCSCF energy contours for $=82° 84.45° 87° as a function of and S.  (F0RS2/il). 

Increment: 0.5 mhartree. m: minimum; S: saddle point; 

E^, Eg: energies of m, S respectively 
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were made, both starting with the transition state geometry just found. 

One search using the same FORSl space but the basis set (iii), including 

hydrogen polarization functions, and another search using the basis set 

(ii) but the enlarged 1764 dimensional FORS2 space including CC-a bond 

correlations. These calculations yielded only slightly displaced 

transition states, both with Cg symmetry. For the latter calculation the 

eigenvalue spectrum of the Hessian was redetermined and it turned out to be 

very similar to the one mentioned in the preceding paragraph. 

The coordinates of all transition states are listed in rows 5 to 8 of 

Table 4.A.3. The two sets of normal mode frequencies are listed in Tables 

4.A.4A and 4.A.4B. 

Finally, the influence of higher order correlations was examined 

through CI calculations in the configuration space spanned by all single 

and double excitations out of the four active orbitals of the dominant 

configuration of the 20 dimensional FORSl space, using the orbital basis 

(ii). These calculations were performed for all points of the panel for $ 

- 84.45° on Figure 4.A.3, using the geometric parameters of the former 

calculations. The new calculations lead to the contour plot exhibited in 

Figure 4.A.4 which is almost quantitatively identical with the 

corresponding plot of Figure 4.A.3 (except, of course, for the absolute 

value of the energy at the minimum): For both plots, the minimum occurs at 

the same position, the energy difference between the saddlepoints and the 

minimum is about 10 Kcal/mole and the increment is 0.5 mhartree. 

Thus, all calculations involving the larger basis sets (ii) and (iii) 

lead to a transition state with Cg symmetry and we conclude that the 

transition state region of the actual energy surface is adequately depicted 
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Figure 4.A.4. CI (1764 configurations) energy contours for $-84.45° 

Increment: 0.5 mhartree. miminiraum; S; saddle point 
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by the displayed contour plots. Consequently, the channel leading up to 

the ring-opening transition state as well as the channel leaving the 

transition state preserve Cg symmetry and the bifurcation of the reaction 

path into two branches, which are each other's mirror Images and lead to 

the two isomeric products, must occur after the transition state. The 

basis set improvement from the ST0-3G basis to the extended bases leads 

therefore to a shift of the bifurcation from before to after the transition 

state. 

Because of the flatness of the energy surface in this region, this 

qualitative change is, however, the result of relatively small quantitative 

changes on the energy surface. 

3.2. The other critical points. 

In the preceding section we saw that the more accurate calculations 

lead to a somewhat different topography around the ring opening transition 

state than was obtained in the first paper. For the other critical points, 

viz. the reactant cyclopropylidene, the product aliéné and the aliéné 

isomerization transition state the changes are less dramatic. As was done 

for the ring-opening transition state, the geometries of all these critical 

points were reoptimized with respect to all fifteen coordinates for the 

following levels of approximation: 

the 20 configuration FORSl space with basis set (ii), 

the 20 configuration FORSl space with basis set (iii), 

the 1764 configuration F0RS2 space with basis set (ii). 

Table 4.A.3 also lists the results for all critical points including 

the ring-opening transition state. It can be seen that, for all 
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Table 4.A.3. Optimized geometries of the critical points of the ground state recation surface 

«ï» Si Sg roi tQ2 1̂1' 1̂ 22 2̂2' "̂ 011 **011' ®022 **022' 2̂ 

c 59.45 90. 0 90. 0 1. 532 1 .532 1. 081 1 .081 1. 081 1, .081 117, ,1 117. 1 117. 1 117. 1 33. .1 33. 1 
60.33 90. 0 90. 0 1. 504 1 .504 1. 078 1 .078 1. ,078 1, ,078 116, .1 116. 1 116. 1 116. 1 35. .8 35. 8 

60.41 90. 0 90. 0 1. 503 1 .503 1. 077 1 .077 1. .077 1. .077 116, .1 116. 1 116. 1 116. 1 35, .6 35. 6 

58.62 90. 0 90. 0 1. 549 1 .549 1. 077 1 .077 1. .077 1 .077 115 .7 115. 7 115. 7 115. 7 36 .4 36. 4 

T 84.24 57. 1 134. 8 1. 448 1 .448 1. 086 1 .081 1, .086 1 .081 118 .3 125. 9 118. 3 125. 9 5 .9 4. 0 
84.45 51. 0 129. 0 1. 422 1 .422 1. 079 1 .077 1 .079 1 .077 117 .8 127. 2 117. 8 127. 2 1 .3 1. 3 

86.52 48. 4 131. 6 1. 429 1 .429 1. 080 1 .078 1 .080 1 .078 118 .1 126. 6 118. 1 126. 6 0 .4 0. 4 
82.37 51. 3 128. 7 1. 449 1 .119 1. 079 1 .078 1 .079 1 .078 116 .7 128. 1 116. 7 128. 1 0 .3 0. 3 

A 180.0 0. 0 90. 0 1. 320 1 .320 1. 083 1 .083 1 .083 1 .083 121 .5 121. 5 121. 5 121. 5 0 .0 0. 0 

180.0 0. 0 90. 0 1. 324 1 .324 1. 076 1 .076 1 .076 1 .076 120 .9 120. 9 120. 9 120. 9 0 .0 0. 0 
180.0 0. 0 90. ,0 1. 323 1 .323 1. 076 1 .076 1 .076 1 .076 120 .9 120. 9 120. 9 120. 9 0 .0 0, ,0 
180.0 0. 0 90. ,0 1. 342 1 .342 1. 075 1 .075 1 .075 1 .075 120 .7 120. 7 120. 7 120. 7 0 .0 0, .0 

I 134.3 0. 0 0. .0 1. 392 1 .392 1. .081 1 .082 1 .081 1 .082 121 .1 121. 7 121. ,1 121. 7 0 .0 0 .0 
135.0 0. 0 0, ,0 1. 385 1 .385 1. ,076 1 .076 1 .076 1 .076 121 .0 121. 0 121. ,0 121. 0 0 .0 0 .0 

135.0 0. 0 0. ,0 1. 385 1 .385 1, .074 1 .077 1 .074 1 .077 121 .0 120. 8 121. ,0 120. 8 0 .0 0 .0 

136.7 0. 0 0, .0 1. 403 1 .403 1, .074 1 .077 1 .074 1 .077 121 .1 120. ,6 121. .1 120. 6 0 .0 0 .0 

C; Cyclopropylidene, 
First entry; FORSl/i, 
Column labels : r. 

T: Transition State, A: Aliéna, I: Aliéné Isomerization Transition State 

01 

^02 
*011 

Second Entry: 
stretch 
stretch 

bend 

FORSl/ii, Third Entry: FORSl/iii, 
- Cq-C, 
- Cq-CJ 
- Cg-Ci-Hi 

"oil' ~ 
in A; a,  /3, S,  $ in degrees 

H,, bend 

1^11 
fn' 

*022 
*022" 

Stretch 
stretch 

- Cq-Cj-Hj bend 

- Ci-Hi 
-

C0-C2 •H,, bend 

r22 

^22' 
^1 • 
^2 -

Fourth Entry: F0RS2/ii 
stretch 
Stretch 

C g - o u t  o f  p l a n e  b e n d  
Cq-(C2H2H2,) out of plane bend 

- C2-H2 
- Cj-Hj. 
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Table 4.A.4A. Comparison between experimental and calculated frequencies 

of the normal modes of aliéné 

Frequency Assignment Experimental® Calculated^ 

(cm''') Raman IR FORSl FORS 2 

''II (e) C-C-C bending 353 189.4 313.4 

'"A (bi) C-C-C twisting 820 890.6 883.9 

«"lO (e) C-C-C bending 838 852 790 .7 870.2 

(e) CHg rocking 1031 1055 .5 1057.9 

•^3 (a,) C—C 1071 1125, .5 1076.6 

(bg) CHg 1389 1563, .9 1597.3 

(a,) CHg 1432 1618, ,0 1551.4 

(bg) C-C 1956 1980 2065. 0 1954.3 

«"5 (bg) CH 2960 3339. 5 3337.5 

(a,) CH 2993 3347. 0 3341.6 

"8 (e) CH 3061 3432.4 3442.4 

Zero-point E (Kcal/mol) 

Herzberg (1966, p.640) 

With basis set (ii) 

35.6 35.9 
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Table 4.A.4B. Calculated normal mode frequencies (in cm 

Cyclopropylidene Transition Aliéné Isomerization 
State Transition State 

1 652.5 -253.0 -1376.9 
655.4 -98.2 -1458.2 

2 883.4 702.3 357.6 
757.7 575.6 320.8 

3 914.2 925.0 490.7 
865.5 971.6 473.0 

4 920.9 982.0 664.9 
867.6 1027.9 725.3 

5 1062.1 1038.2 669.0 
906.4 1043.0 734.4 

6 1124.7 1053.8 987.1 
1072.6 1068.0 968.0 

7 1136.4 1173.5 1054.4 
1100.9 1113.9 1005.0 

8 1289.2 1312.5 1252.4 
1179.1 1170.3 1195.0 

9 1368.8 1348.0 1419.5 
1375.2 1264.5 1373.3 

10 1548.0 1606.0 1599.0 
1546.3 1601.7 1586.2 

11 1585.4 1678.5 1616.7 
1572.9 1659.9 1601.0 

12 3302.6 3306.5 3321.1 
3305.5 3299.1 3311.7 

13 3306.2 3320.6 3333.4 
3310,7 3311.1 3319.1 

14 3387.7 3395.9 3429.5 
3395.6 3392.8 3428.9 

15 3403.6 3411.8 3445.8 
3409.5 3405.5 3444.1 

ZPE 37.0 36.1 33.8 
36.2 35.6 33.6 

First entry: FORSl/ii ; Second entry: F0RS2/ii 



www.manaraa.com

94 

calculations, the CC bond lengths change by more than 10% during the ring 

opening whereas the CH bond length change by less than 0.2%. It can also 

be seen that inclusion of the hydrogen p-orbitals [basis set (iii)] 

produces only negligible changes in geometries and energetics. It seems 

therefore justified to consider correlations in the CC-a-bonds, but not in 

the CH bonds. Overall, the geometries furnished by the calculations of the 

first paper are not changed greatly by the more accurate calculations. In 

fact, for aliéné, the only species for which experimental data are 

available, the ST0-3G results are somewhat closer to the experimental 

values (CC - 1.308 A, CH - 1.087 A, HCH - 118.2° cf. Herzberg p.640, 1966). 

These results support the confidence in the ST0-3G calculations as 

furnishing a good overall picture of the global energy surface. 

The energies of the four critical points at the various levels of 

theory are listed in Table 4.A.5. The table also contains the results of 

calculations with a very large even-tempered Gaussian basis set [Basis (iv) 

of section (4.A.2.2)]. The first row contains the energies resulting from 

calculations with the ST0-3G basis set. However, also for these (FORSl/i) 

calculations, the ring opening transition state energy listed is that at 

the averaged Cg geometry between the two actual (FORSl/i) transition states 

(which have C^ symmetry). As mentioned in Section 4.A.3.1, the energy 

difference between the two geometries is only 0.2 Kcal/Mole. The reason 

for choosing the Cg average is that this geometry was also used for the 

calculations in the second row with basis set (iv) because, from the 

results discussed in the preceding section, it is clear that the geometry 

optimization with this basis set would yield a ring opening transition 

state with Cg symmetry. 
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Table 4.A.5. Energies (in hartree) of critical points on the ground state reaction surface 

AO Basis, 

Configuration Space 

Cyclopropylidene 

Czv 

Transition State 

C_ 

Aliéné 

-'2d 

Aliéné isomeri-

zation T.S. ^2v 

G e o m e t r i e s  

1. FORSl/i 

2. FORSl/iv 

O p t i m i z e d  

-114.39557 

-115.82693 

w i t h  M i n i m a l  B a s i s  S e t  

-114.33331 -114.49936 -114:43350 

-115.80462 -115.93060 -115.86369 

G e o m e t r i e s  

3. FORSl/ii 

4. FORSl/iv 

5. FORSl/iii 

6. F0RS2/ii 

7. CISD from SCF/ii 

O p t i m i z e d  

-115.82073 

-115.82775 

-115.82900 

-115.87169 

-115.84768 

w i t h  E x t e n d e d  B a s i s  S e t s  

-115.80016 -115.92827 -115.85970 

-115.80505 -115.93094 -115.86376 

-115.80821 -115.93663 -115.86798 

-115.85885 -115.98780 -115.91222 

-115.83590 -115.95347 -115.88093 

FORSl 

F0RS2 

CISD from SCF 

N u m b e r  o f  

8/20 

508/1764 

3603/13700 

C o n f i g u r a t i o n  s ' ® '  

12/20 12/20 4/20 

900/1764 492/1764 432/1764 

6912/13700 3580/13700 3163/13700 

First entry: configurations in the corresponding symmetry group 

Second entry: number of configurations in C^ 
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Table 4.A.6. Critical energy differences (in Kcal/mol) for the ground state reaction surface 

AO Basis, 

Configuration Space 

Ring opening 

exothermicity 

Ring opening 

barrier 

Aliéné isomer!-

zation barrier 

G e o m e t r i e s  

1. FORSl/i 

2. FORSl/iv 

O p t i m i z e d  w i t h  

-65.1 39.1 

-65.1 14.0 

M i n i m a l  B a s i s  

41.3 

42.0 

S e t  

G e o m e t r i e s  

3. FORSl/ii 

including ZPE 

O p t i m i z e d  

-67.5 

-68.9 

w i t h  

12.9 

12.0 

E x t e n d e d  B a s i s  

43.0 

41.2 

S e t s  

4. FORSl/iv •64.8 14.2 42.2 

5. FORSl/iii -67.5 13.0 43.1 

6. F0RS2/ii 

including ZPE 

-72.9 

-73.2 

8.1 

7.5 

47.4 

45.1 

7. CISD from SCF -66.4 7.4 45.5 
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At the bottom of Table 4.A.5, the number of configurations for the 

various FORS spaces are listed. In each case, the first number denotes the 

number of configurations that are left in the relevant irreducible 

representation of the applicable symmetry group indicated in the heading. 

This is the number of configurations pertinent for the energy calculation 

at the critical point. The second number is the number of configurations 

in symmetry which are required for calculations at slightly displaced 

geometries which are needed for determining the Hessian matrix. 

The vibrational frequencies in cm ^ obtained by diagonalizing the 

hessians for two types of calculations (FORSl and F0RS2 with basis set 

(ii); rows 3 and 6 of Table 4.A.5) are listed in Table 4.A.4A, Also listed 

are the total zero-point energies (in Kcal/Mole), viz. (S|jhV|^/2) where the 

sum goes over all 15 frequencies for cyclopropylidene and aliéné, but only 

over the 14 real frequencies (k - 2 to 15) for the two transition states. 

Experimental values are available for aliéné and they are also listed in 

Table 4.A.4B. 

Of interest to chemists are the energy differences between the 

various critical points. They are listed in Table 4.A.6 for the various 

levels of theory reported in Table 4.A.5. For the two types of 

calculations for which the vibrational analysis was performed, the energy 

differences including the zero-point energy corrections are also given. It 

is apparent that the ring-opening exothermicity and the aliéné 

isomerization barrier are remarkably independent of the level of theory 

used. However, as expected, the ring opening barrier is significantly 

reduced by going to the more accurate wavefunctions. This is essentially 

due to the extension of the basis set as is evident from the second row 
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which differs from the first only in the increase in the size of the basis 

set (the configuration space and the geometry being the same). It reduces 

the barrier from 39 Kcal/Mole to 14 Kcal/Mole. Enlargement of the 

configuration space to Include CC-a bond correlations (Row 6) lowers the 

barrier to about 8 Kcal/Mole and inclusion of higher order correlations to 

7.4 Kcal/Mole. From row 3 and 6 it is seen that the zeropoint energy 

corrections to the barrier is about 0.5 to 1 Kcal/Mole. Combining this 

result with the barrier given in row 7, one can estimate a value around 7 

Kcal/Mole. This inference is in agreement with the estimate of 5-6 

Kcal/Mole which has been estimated from experimental results of related 

reactions (Warner, 1988). 

4. Reaction paths 

4.1. The steepest descent: Qualitatively. 

The possible relationships between transition states, bifurcations 

and reaction paths, modeled as steepest descent curves on an energy 

surface, have been discussed in detail by Valtazanos and Ruedenberg (1986). 

One of the observations made by these authors was that steepest descent 

curves descending from a transition state with Cg symmetry either start out 

perpendicular to the Cg plane or lie in the Cg plane, in which case they 

maintain Cg symmetry until they meet another point where the gradient 

vanishes or is multivalued. 

The steepest descent curves which are relevant for the energy surface 

obtained by the more accurate (FORSl/ii) calculations are shown in Figure 

4.A.5. Reaction paths are shown as curves in the 5^,fig plane with the 
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appropriate values of 4 indicated in parenthesis at various points. The 

alternative coordinate 6* - (6^+52)/2 - 90° breaks Cg symmetry, whereas S.  -

preserves Cg symmetry when - 0. The heavy lines depict the 

steepest descent paths passing through the transition states. On them, the 

point R ($ - 60.4°) indicates the reactant cyclopropylidene and the point P 

on the line - 45° (# - 180°) denotes the product aliéné. Actually, the 

entire line S^. - 45° ($ - 180°), represents aliéné, a displacement along 

this line corresponding to a rotation of aliéné around its molecular axis. 

The line 5+ - - 45° ($ - 180°) corresponds to the isomeric mirror image of 

aliéné indicated by P'. The point TS ($ - 84.5°) is the ring opening 

transition state and the point TS* (4> - 135°) is the transition state for 

the isomerization between the two aliéné isomers. The steepest descent 

lines emanating from TS preserve Cg symmetry, one ending at the reactant R, 

the other at the transition state TS*. The downhill steepest descent lines 

starting at TS* and ending at the two isomeric aliéné products do not 

preserve Cg symmetry. 

Since TS* is a normal second order saddle point and the downhill 

directions are towards the aliénés, the steepest descent line arriving at 

TS* from TS must do so on a ridge and this is confirmed by the normal mode 

frequencies listed in Table 4.A.4B. However, at TS this steepest descent 

line starts out as a downhill valley, as can also be seen from the normal 

modes in table 4.A.4B as well as from the discussion in Section (4.A.3.1), 

in connection with Figure 4.A.3. Consequently, the steepest path from TS 

to TS* must turn from a valley into a ridge someplace in between: i.e. it 

has a valley ridge inflection point. 
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I 
(97.6) 

TS* 
(13,5) , , 

60 90 120 150 180 210 
Sj (degrees)— 

Figure 4.A.5, Intrinsic Reaction Coordinate in the (4,5^,fig) space 

(F0RS2/ii). Heavy line: IRC; Thin line: another steepest 

descent line. C: cyclopropylidene; TS; transition state 

I: valley-ridge infelction point; CR; intersection point; 

TS*; aliéné isomerization transition state; P,P': aliéné 

4> values are given in parentheses 
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There exists however a further complication due to the fact, 

discussed in Section 4.B.4.3. that the ground state wavefunction at the 

transition state TS belongs to a different irreducible representation with 

respect to the Cg mirror plane than the groundstate wavefunction at the 

transition state TS*. At TS, the irreducible representation is A', at TS* 

it is A". It follows that, in the C, preserving internal coordinate 

subspace, there are two states, one of symmetry A' , the other of symmetry 

A" such that E(A") > E(A') at TS and E(A') > E(A") at TS*. These two 

states cross between TS and TS* at a point which is denoted by CR on Figure 

4.A.5. Outside the Cg subspace, the two states belong to the same 

irreducible representation, namely A of C^. 

We shall see that near the intersection CR, the lower surface is a 

ridge on the A' side as well as on the A" side of CR. The steepest descent 

path starting out as a valley at TS must therefore turn into a ridge at a 

point before reaching CR. This point on the A' curve is denoted as I (for 

"inflection") on Figure 3.A.5. The steepest descent path along the A" 

curve from CR to TS*, on the other hand, remains a ridge all the way. The 

steepest descent paths from TS* to the two aliéné products P, P' are 

valleys. 

Finally, it will be seen that, at the crossing point CR, the gradient 

continues to point in a Cg preserving direction. Hence, following the 

steepest descent on A' from TS to CR and on A" from CR to TS*, the path 

will run at first along the floor of a valley, then atop a ridge. It is 

evident that dynamic trajectories will not stay atop the ridge, but fall 

off it due to the slightest destabilization. Therefore, if one wishes to 

use steepest descent lines as rough models for reaction paths which end up 
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at the aliéné products, then the only option is to start anew at a reason­

able point nearby I or CR on a different, Cg symmetry breaking steepest 

descent paths. Whether the neighborhood of the valley-ridge inflection 

point I or that of the crossing point CR is most appropriate for this 

restart, is of no consequence in this case since the two points lie so 

close to each other. 

We shall now substantiate and elaborate upon this qualitative 

description in quantitative detail. The following discussion are based on 

calculations made at the (FORSl/ii) level. 

4.2. The steepest descent; Quantitatively 

From R to TS 

First, as mentioned in Section 4.A.3.1, the steepest descent curve 

from the ring opening transition state TS to the reactant R 

(cyclopropylidene) was determined. It preserves Cg symmetry and 

corresponds to the straight line between C and TS or Figure 4.A.5. The 

values of the ring opening angle $ are given in parentheses. The energy 

along this path is displayed as a function of $ in Figure 4.A.6 by the 

curve between R and TS. It is denoted by A', the irreducible 

representation of this state in Cg. The dependence upon the symmetry 

preserving coordinate 6. and the secondary coordinates 7j is suppressed. 

Table 4.A.7 lists the energy and all 15 coordinates for a number of 

points on this steepest descent path. 
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Figure 4.A.6. The various reaction paths 



www.manaraa.com

104 

From TS to CR 

Next the steepest descent path from the transition state TS towards 

increasing values of $ was determined. In principle, this path preserves 

Cg symmetry. However, because numerical problems can be expected after $ -

®(I), when the path runs atop a ridge, the steepest descent calculations 

were performed under restriction to C, symmetry with the wavefunction 

restricted to the A' irreducible representation. The energy is displayed 

as a function of $ by the remainder of the curve denoted by A' in Figure 

4.A.6. It is seen to descend very slowly to a minimum at a ring opening 

angle of about ® - 105° which lies only 2 kcal/mole lower than the 

transition state TS. 

We then determined the energy of the lowest A" state along the same 

path in internal coordinate space, i.e. all internal coordinates were 

chosen to be identical to those of the steepest descent path of the A' 

state listed in Table 7. This energy is displayed, as a function of $ by 

the left part of the curve labelled A" in Figure 4.A.6. It starts out 

higher than the A' energy, decreases very rapidly and crosses the A' curve 

at $ - 100°, which is thus the point CR. 

On Figure 4.A.5, the $ values, given in parentheses along the 

straight line depicting the steepest descent path force TS to CR, are those 

of the A' state. 

Finally, we calculated energies at various points close to the 

steepest descent curve by choosing 6^ - 0.5° and leaving the other 14 

coordinates unchanged. We determined the valley-ridge inflection point I 

where the energy increase with 6+ changes into an energy decrease with 6 + .  

It was found to occur for $ - $(I) - 97.6°. 
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Table 4.A.7. Internal coordinates of points along the various reaction paths 

$ «2 foi ^02 ri1 ^22 ^22' °011 "Oli­ ®022 *022' f2 Energy 

From R (Cyclopropylidene) to P* (V' Planar Aliéné) via TS on the V' surface 

R 60, .33 90. 0 90. 0 1.532 1. .532 1, .081 1. .081 1.081 1, .081 117.1 117.1 117.1 117.1 33.1 33.1 -115.82073 

76. .40 60. 4 119. 6 1.439 1. .439 1, .084 1. .078 1.084 1. ..07-8 116.5 127.3 116.5 127.3 8.9 8.9 -115.80130 

78. .00 60. 0 120. 0 1.422 1. .422 1 .079 1. .077 1.079 1, .077 116/3 128/5 116/3 128/5 4.2 4.2 -115.80045 

TS 84. .45 51. 0 129. 0 1.422 1. .422 1 .079 1. .077 1.079 1, .077 117.8 127.2 117.8 127.2 1.3 1.3 -115.80016 

92. .41 41. 4 138. 6 1.415 1, .415 1 .091 1. .078 1.091 1, .078 118.9 126.2 118.9 126.2 3.2 3.2 -115.80042 

94. .00 39. ,1 140. ,9 1.414 1 .414 1 .093 1. .078 1.093 1 .078 119.1 126.0 119.1 126.0 3.6 3.6 -115.80058 

95. .52 36. .7 143. 3 1.414 1, .414 1 .094 1, .077 1.094 1 .077 119.4 125.7 119.4 125.7 3.9 3.9- -115.80077 
97. .01 34, ,2 145. 8 1.413 1, .413 1 .095 1 .077 1.095 1 .077 119.7 125.5 119.7 125.5 4.0 4.0 -115.80098 
98. .53 31, ,4 148. 7 1.413 1 .413 1 .096 1, .076 1.096 1 .076 119.9 125.3 119.9 125.3 4.0 4.0 -115.80124 

CR 100. .33 27. ,6 152. .4 1.412 1 .412 1 .097 1, .075 1.097 1 .075 120.2 125.0 120.2 125.0 3.8 3.8 -115.80157 

101, .00 21. .8 158. 2 1.416 1 .416 1 .084 1, .080 1.084 1 .080 120.4 125.0 120.4 125.0 2.9 2.9 -115.80211 

104, .50 1. .7 178. .3 1.417 1 .417 1 .085 1 .080 1.085 1 .080 121.1 124.6 121.1 124.6 0.2 0.2 -115.80305 

P* 105 .48 0. .0 180. .0 1.414 1 .414 1 .086 1 .080 1.086 1 .080 120.9 124.5 120.9 124.5 0.0 0.0 -115.80328 

CR 

To the TS* (Aliéné Isomerization Transition State) on the A" Surface 
92 .41 41 .4 138. 6 1. 415 1. 415 1. 091 1. 078 1. 091 1. 078 118 .9 126. 2 118. 9 126. 2 3 .2 3. 2 -115. 75900 
96 .53 35 .0 145. 0 1. 413 1. 413 1. 095 1. 077 1. 095 1. 077 119 .6 125. 6 119. 6 125. 6 4 .0 4. 0 -115. 78232 
98 .53 31 .4 148. 7 1. 413 1. 413 1. 096 1. 076 1. 096 1. 076 119 .9 125. 3 119. 9 125. 3 4 .0 4. 0 -115. 79273 

100 .33 27 .6 152. 4 1. 412 1. 412 1. 097 1. 075 1. 097 1. 075 120 .2 125. 0 120. 2 125. 0 3 .8 3. 8 -115. 80157 

101 .94 27 .1 152. 9 1. 407 1. 407 1. 082 1. 074 1. 082 1. 074 121 .2 123. 3 121. 2 123. 3 3 .9 3. 9 -115. 80867 

105 .44 25 .7 154. 3 1. 396 1. 396 1. 075 1. 072 1. 075 1. 072 120 .3 123. 1 120. 3 123. 1 3 .9 3. 9 -115. 81999 

110 .46 22 .8 157. 2 1. 388 1. 388 1. 075 1. 071 1. 075 1. 071 117 .5 125. 1 117. 5 125. 1 3 .8 3. 8 -115. 83259 

116 .13 17 .9 162. 1 1. 385 1. 385 1. 078 1. 068 1. 078 1. 068 116 .6 125. 6 116. 6 125. 6 3 .0 3. 0 -115. 84416 

122 .08 11 .1 168. 9 1. ,384 1. 384 1. 079 1. 073 1. 079 1. 073 117 .4 124. 7 117. 4 124. 7 1 .8 1. 8 -115. 85323 

127 .91 4 .5 165. 5 1. ,384 1. 384 1. 078 1. 072 1. 078 1. 072 118 .8 123. 2 118. 8 123. 2 0 .7 0. 7 -115. 85791 

133 .42 1 .0 179. 0 1. ,385 1. 385 1. 077 1. 075 1. 077 1. 075 120 .6 121. 8 120. 6 121. 8 0 .1 0. 1 -115. 85946 

135 .00 0 .0 180. 0 1. .385 1. 385 1. ,076 1. .076 1. ,076 1. .076 121 .0 121. 0 121. 0 121. 0 0 .0 0. .0 -115. 85970 
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Table 4.A.7.  (cont inued) 

«1 h roi ^02 fil 1:22 ^22' °Oil °011' ®022 (*022' h Energy 

From TS* (Aliéné Isomerizacion Transition State) to P (D 2d Aliéné) via a c. route 
TS* 135 .0 0.0 180. 0 1 .385 1 .385 1 .076 1.076 1. 076 1 .076 121. 0 121 .0 121. 0 121.0 0.0 0.0 -115 .85970 

135 .1 -5.3 174. 7 1 .384 1 .384 1 .074 1.075 1. 073 1 .075 121. 1 121 .0 121. 2 120.9 1.4 1.4 -115 .86316 
135 .4 -11.7 168. 4 1 .380 1 .380 1 .071 1.059 1. 067 1 .063 121. 4 120 .8 121. 4 120.8 2.9 2.9 -115 .87282 
138 .5 -27.9 152. 1 1 .356 1 .356 1 .071 1.116 1. 084 1 .105 123. 1 119 .5 123. G 119.6 6.0 6.0 -115 .90119 
141 .8 -36.1 144. 1 1 .342 1 .342 1 .056 1.121 1. 079 1 .105 123. 8 118 .6 123. 6 118.7 6.6 6.6 -115 .91119 
145 .0 -40.2 140. 1 1 .337 1 .337 1 .044 1.118 1. 071 1 .101 123. 9 118 .2 123. 7 118.4 6.6 6.6 -115 .91534 
151 .3 -43.5 136. 8 1 .332 1 .332 1 .039 1.110 1. 060 1 .094 123. 5 118 .4 123. 4 118.5 5.9" 5.9 -115 .91982 
157 .3 -44.2 135. 6 1 .328 1 .328 1 .050 1.114 1. 059 1 .100 122. 4 119 .6 122. 4 119.5 4.9 4.9 -115 .92268 
161 .6 -44.6 135. 6 1 .327 1 .327 1 .050 1.111 1. 055 1 .103 122. 0 120 .0 122. 0 119.9 4.2 4.2 -115 .92396 

P 180 .0 -45.0 135. 0 1 .324 1 .324 1 .076 1.076 1. 076 1 .076 120. 9 120 .9 120. 9 120.9 0.0 0.0 -115 .92827 

From CR (Intersection point) to P (0%, Aliéné) via a route 
CR 100 .3 27.6 152. 4 1 .412 1 .412 1 .097 1.075 1. 097 1 .075 120. 2 125 .0 120. 2 125.0 3.8 3.8 -115 .80157 

103 .6 33.0 164. 6 1 .406 1 .391 1 .080 1.078 1. 080 1 .077 121. 3 123 .3 121. 8 122.9 3.8 3.8 -115 .82687 
111 .8 40.2 173. 2 1 .377 1 .373 1 .072 1.049 1. 075 1 .046 126. 3 117 .6 123. 9 119.5 6.8 -1.6 -115 .85849 
117 .0 45.0 -168. 4 1 .359 1 .366 1 .074 1.121 1. 091 1 .079 126. 3 117 .5 124. 2 119.1 6.9 -3.7 -115 ,87502 
120 .8 47.9 -163. 6 1 .351 1 .360 1 .066 1.123 1. 094 1 .075 126. 1 118 .9 124. 1 118.9 6.8 -5.0 -115 .88461 
130 .5 52.7 -155. 1 1 .342 1 .349 1 .088 1.104 1. 058 1 .039 126. 1 116 .6 124. 1 118.4 6.5 -7.0 -115 .90145 
139 .2 54.7 -150. 6 1 .334 1 .340 1 .096 1.116 1. 063 1 .049 124. 8 117 .5 123. 4 118.7 6.0 -7.6 -115 .91093 

P 180 .0 55.0 -145. 0 1 .324 1 .324 1 .076 1.076 1. 076 1 .076 120. 9 120 .9 120. 9 120.9 0.0 0.0 -115 .92827 
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From CR to TS* 

For $ larger than 4>(CR) - 100°, the curve A" lies below the curve A' 

on Figure 4.A.6 and, hence, the ground state belongs to the irreducible 

representation A" on this part of the Cg preserving coordinate subspace. 

We therefore determined the ground state steepest descent curve from CR to 

TS* under the restriction that the wavefunction belongs to A" symmetry. 

Its energy is displayed as a function of $ by the right part of the curve 

labelled A" on Figure 4.A.6. On Figure 4.A.5, this steepest descent path 

is depicted by the straight line from CR to TS*, the $ values in 

parentheses are those of the A" state. 

It is apparent that the A" energies for 9 < 100° and the A' energies 

for $ > 100° are part of the lowest excited state. It was verified that it 

has in fact a minimum, i.e. an equilibrium geometry at $ - 105°. 

From TS* to A 

The steepest descent paths shown in Figure 4.A.5 from TS* to the two 

aliéné products P, P' are each other's mirror images. Again the 

appropriate $ values are indicated in parentheses and the energy is 

displayed as a function of 4 in Figure 4.A.6. This path is a model for the 

isomerization of the aliéné ground state. 

From I/CR to P/P' 

As discussed in Section 4.A.4.1, the Cg preserving steepest descent 

path from I over CR to TS* is unsuited as a reaction path model because it 

runs atop a ridge. We therefore calculated a Cg-symmetry breaking steepest 

descent curve which lead directly to the product P. It was obtained by 
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starting near the intersection point CR. All internal coordinates of this 

starting point were chosen as those of the point CR, except that 6* - 0° 

was replaced by 6* - 0.5°. The resulting steepest descent curve is shown 

as a light line on Figure 4.A.5 and its energy is displayed as a function 

of $ in Figure 4.A.6 by the curve denoted as A. 

The internal coordinates and energies of the points on the various 

steepest descent paths are listed in Table 4.A.7. 

5. The Intersecting Coordinate Subspace (ICS) 

The point CR is not the only point where the two states corresponding 

to the symmetries A' and A" (in C,) cross. In fact, there exists a 

multidimensional region in the coordinate space where E(A') - E(A"). We 

call it the "intersecting coordinate subspace (ICS)". Since we are not 

aware of previous explicit examinations of high dimensional potential 

energy surface intersections, we shall discuss the present ICS in some 

detail. We shall be particularly concerned with the ICS in the 

neighborhood of the point CR since this has a bearing on the steepest 

descent curves near CR which, in turn, are relevant for the mentioned 

restarting of the steepest descent near I or CR toward the products. 

5.1. Dimensionality. 

Two potential energy surfaces do not have to intersect. However, if 

they do then it is to be expected (i.e. the opposite is highly unlikely) 

that there exist, embedded in the space spanned by all internal coordinates 

<Î11 92 ••* regions having the character of multidimensional curvilinear 
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linear surfaces on which - E2. The ensemble of these regions forms the 

intersecting coordinate subspace for the two states. This ICS is deter­

mined by having to satisfy two conditions, namely 

AH(q, . . . q„) - ... q„) - HggCq^ . .. q*) - 0 , (4,A,1) 

^13(^1 ••• "" ® ' (4.A.2) 

where are hamiltonian matrix elements with respect to a 

certain many-electron function basis F^, Fg. As indicated, they are 

functions of the M internal coordinates q^ ... q# of the molecule. In 

general, it is therefore to be expected that, if the Eqs, (4.A.1,2) have 

any real solutions at all, then the solutions space, i.e. the ICS is a 

hyperspace of dimension (M-2). This conclusion must however be modified in 

those cases where, for all values of the coordinates q^ ... q,^ the molecule 

is invariant under a symmetry group and the two intersecting states belong 

to different irreducible representations. In this situation the functional' 

bases F^, Fg can be chosen as belonging to these two irreducible 

representations without reference to the hamiltonian of the system and, 

hence, the matrix element vanishes identically for all values of (q^ 

... q^). Consequently, F^ and Fg are in fact the two states and only Eq. 

(4.A.1) provides a true restriction. Thus, the ICS is of dimension (M-1) 

in this case. Similar reasoning applies if a coordinate subspace is 

invariant under some symmetry group, as will be seen below. 

In the present case, the overall symmetry group is C^ and the full 

internal coordinate species of dimension 15. Since C^ has only one 

irreducible representation, the ICS is of dimension 15-2 - 13. 
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There exists however, as we have seen, a coordinate subspace in which 

the molecule has Cg symmetry. It is apparent that the ring opening 

coordinate $ preserves Cg symmetry when it exists and that the remaining 14 

internal coordinates (g,, fg» 7i i Iz Tis) come in pairs such that, for 

each pair, the sum and the difference are either symmetric or antisymmetric 

with respect to the Cg symmetry plane. Let 7^', 72,' ... 75' denote the 

antisymmetric combinations and 6., 7^", 72" ... 75" the symmetric ones. It 

follows then that the preservation of Cg symmetry is equivalent to the 

seven "Cg symmetry-breaking" coordinates fi+, 7i't 72' ••• 76* remaining zero 

and, when this is the case, that the Cg preserving coordinate subspace is 

spanned by the eight "Cg symmetry preserving" coordinates $, 5., 7^", 72" 

• • • 76" • 

Since, within this subspace, the two states under consideration 

belong to different irreducible representation of Cg (viz. A' and A"), it 

follows from what has been said before that, within the Cg preserving 

subspace, the ICS is of dimension 8 - 1-7. Thus, of the 13 degrees of 

freedom the intersecting coordinate subspace has in C^, seven maintain Cg 

symmetry and 13-7-6 break Cg symmetry. 

5.2. Linear approximation near CR 

From Eqs. (4.A.1) and (4.A.2) it is apparent that, in the immediate 

neighborhood of CR, the ICS hypersurface coincides to first order with the 

tangential hyperplane which is perpendicular to the gradient of AH and that 

of H^2' These two gradients have simple forms. First, since, as we have 

seen earlier, the energies vary quite slowly with the twelve secondary 

coordinate 7^, 72 ... 7^2' can neglect the partial derivatives with 
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respect to these coordinates. It is furthermore evident that and Hgg, 

and hence also AH, are symmetric with respect to deviations from Cg 

symmetry whereas H^g is antisymmetric with respect to such displacements. 

Hence the partial derivative of AH with respect to the antisymmetric 

coordinate 5+ vanishes as do the partial derivatives of H^g with respect to 

the symmetric coordinates i and 5.. Expansion of the two conditions 

(4.A.1) and (4.A.2) to first order yields therefore 

AH — a^ $ + ag — a f — 0 , (4.A.3) 

H,2 - b 5+ - 0 , (4.A.4) 

where 

$ - $ - 4>(CR) - displacement of $ from CR 

5. - 6. - 6.(CR) - displacement of from CR (4.A.5) 

6+ - &+ - &+(CR) - displacement of from CR 

a, - [a(AH)/a$]cp, ag - [3(AH)/a«.](.„, b - [aH^g/afiJcR (4.A.6) 

and 

(  -  (a^ $  +  ag 6 . ) / a ,  with a - [a^^ + ag^]'^^ (4.A.7) 

It is now apparent that, near CR, the ICS is approximated by the 13-

dimensional hyperplane defined by 
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"" 0 , ( - 0 . (4.A.8) 

Conversely, the coordinates spanning the ICS hyperplane near CR are the six 

Cg symmetry breaking coordinates 7^', ... 7^' and the seven Cg symmetry 

preserving coordinates 7^", 72" ... 7^" and 

The coordinates rj are obtained from $, 5. by an orthogonal 

transformation. 

In fact, we shall see in the next section that ag « a^, so that, 

approximately, ( » $ and r) ~ S.. The reason for this is as follows. 

The orbital analysis to be discussed in Sections 4.B.4.2 and 4.B.4.3 will 

show that the crossing of the A' and the A" energies is due to the shift of 

approximately one electron from the lone orbital on the central carbon, 

with A' symmetry, to the nonbonding molecular orbital between the two end 

carbons, with A" symmetry. This shift is a consequence of the fact that, 

as the ring opens, the orbital energy of the A' orbital increases (due to 

increasing p character) whereas that of the A" orbital decreases (due to 

the increasing distance between the end atoms). Since these energy changes 

are essentially determined by the ring-opening angle $, one would indeed 

expect that, to first order, one has approximately 

q - (ag $ - a, 6.)/a . (4.A.9) 

AH K a, $ . (4.A.10) 

Near CR, the ICS is then approximately the hyperplane satisfying 
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$ - $(CR), 6+ - 6+(CR) - 0. (4.A.11) 

5.3. Determination of the linear approximation 

Near the point CR on the ICS, the lower energy surface is given by 

the expression 

E - E(CR) + H - [(AH)^ + (4.A.12) 

where, in agreement with (4.A.3) - (4.A.7), the terms AH and given 

by 

AH - a^ 4» + aj 6. , (4.A.13) 

H,2 - b 6+ , (4.A.14) 

and the term H is given by 

H - (H„ + H22)/2 - c, $ + cg 6. (4.A.15) 

The partial derivative of H with respect to 5+ vanishes for the same reason 

as it does for AH. 

The coefficients a^, ag, b, c^, Cg were determined as follows. After 

having found the crossing coordinates $(CR), 5.(CR) and all yj (CR), as 

described in Section (4.A.4.2), the energy of the molecule was calculated 

for the following geometries 
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(i) i - 0. 5. - 0, 6, - r 

(iia) i - 0. L - 0, 5. - 1° 

(iib) - 0. L - 0, 6. - -1" 

(iiia) s. - 0, s. - 0, i - r 

(iiib) s. - 0, s. - 0, i - -1° 

(iva) s. - 0, s. - i. 
1—

1 
1 

< -Q
. 

(ivb) - 0, 8. - i, 

1—
1 

1 
< 

Reference to Eqs. (4.A.11) - (4.A.15) shows that calculation (i) yields b, 

calculations (iia) and (lib) yield jagl and Cg, calculations (iiia) and 

(iiib) yield |a^| and c^, calculations (iva) and (ivb) yield |a^ + agi and 

(c^ + Cg). From calculation (ii), (iii) and (iv) one obtains a^ and and 

one can check (c^ + Cg) against c^ and Cg to verify the validity of the 

linear approximation. The following values were found: 

a^ - 1729 microhartree ag - 260 microhartree 

c^ - -1891 microhartree Cg- - 325 microhartree (4,A,16) 

b - 93 microhartree. 

5.4. Steepest descent lines near CR. 

Insertion of the values of Eq. (4.A.16) into the definition (4.A.7), 

(4.A.9) for Ç, »? and into the energy expression (4.A.12) to (4.A.15) yields 

E - E(CR) - -1918 f - 40% - [(17480^ + (935+)^]^/^ , (4.A.17) 
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where E given in microhartrees and 

( - 0.98894 + 0.14875. (4.A.18) 

T) - - 0.1487^ + 0.98895.. 

The line ( - 0 is part of the ICS. On it the energy varies according 

to E-E(CR) - - 40%. (The other six coordinates of the ICS in Cg are 7^", 

72" ... 7^"). The slow descent for ( < 0 belongs to the A' state, the 

steep descent for Ç > 0 belongs to the A" state. In agreement with an 

earlier statement, the steepest descent lines are nearly parallel to the f 

axis which, in turn, is very close to the 4> axis. 

The following conclusions can be drawn: (i) Only one steepest 

descent line arrives at CR from ^ < 0 and only one steepest descent line 

leaves CR towards ( > 0; (ii) Both, the steepest descent line arriving at 

CR from ( < 0 and the one leaving CR towards ( > 0, maintain Cg symmetry 

(i.e. 5* remains zero); (iii) Within the Cg preserving coordinate subspace, ' 

there occurs a relatively small change in the direction and a very large 

change in the magnitude of the steepest descent lines when they cross the 

ICS near CR. It follows that one has to restart on a steepest descent line 

that does not pass through CR, if one wishes to follow a Cg symmetry-

breaking steepest descent to the aliéné product. 

5.5. Intersecting Coordinate Subspace and reduced energy surfaces 

In the discussion of the global features of the potential energy 

surface by Valtazanos et. al. (1990) as well as in the discussion of the 

ring opening transition state in Section 4.A.3.1 we relied heavily on the 
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reduced potential energy surface which is easier to visualize. It is 

obtained by optimizing the energy for each choice of ($, 6^, (g) and hence a 

function E($,f ̂,62) - This function is the collection of all these points 

on the full surface E(^,5^,fi2i7i>72'•which satisfy the twelve 

conditions 

- 0, j - 1, 2, ... 12 . (4.A.19) 

In the present section we examine the relation between the reduced 

surface, and the intersecting coordinate space. We must now deal with two 

reduced surfaces, namely 

Ei(^,fil.52) defined by (aE,/aj- 0 , j-1,2. .. 12, (4.A.20) 

defined by (SEj/aj - 0 , j-1, 2. . . 12 . (4.A.21) 

Complications arise from the fact that, for a given choice of (1^, 6^, gg), 

the values of the optimized secondary coordinates (7^ ,72'•-712) of 

E^(^,51,^2) are in general different from those of ,62)-

Consider the 13 dimensional ICS in C^. The twelve additional 

derivative conditions (4.A.20) define a line on the ICS which is also a 

line on the reduced surface E^ ((^, 5^,fig) • Similarly, addition of the twelve 

derivative conditions (4.A.21) will define another line on the ICS which, 

at the same time, lies on the reduced surface EgC^,^^ ,62). In general, 

these two lines on the ICS.are not identical, they will not even intersect. 

Similar reasoning holds in the Cg preserving subspace defined by 

7^'- 72'- ... - 7^'= 0. Since the derivatives with respect to these 



www.manaraa.com

117 

antisymmetric coordinates vanish as well when Cg is present, the twelve 

Eqs. (4.A.19) can be replaced by the six conditions 

- 0. j - 1,2, ... 6. (4.A.22) 

These six additional conditions define a line in the 7-dimensional ICS in 

Cg which also lies on the reduced surface E(^, 5^.-0,5.), Again, the lines 

corresponding to and Ej are different and cannot be expected to 

intersect. 

For both reduced surfaces Ei(^, 5^, ig) , .fg) the ICS line found 

In symmetry can be identical with that found for Cg symmetry, i.e., it 

can lie entirely in the Cg preserving subspace. This does not have to be 

so, but we believe it to be the case here. 

To illustrate these observations, we made calculations involving a 

further reduction of the potential energy surface by minimizing also with 

respect to 5.. The resulting surfaces Ei(^,6+) and were considered 

in the Cg preserving subspace. I.e., we examined the reduced energy curves 

(^), EjCfli) which we obtained by setting 6+ - 0 and adding the respective 

condition 

OEj/ag.)^ g .0 - 0, j - 1,2 (4.A.23) 

to Eq. (4.A.22). The apparent intersection of the reduced energy curves 

for $ ranging from 84° to 105°, shown in Figure 4.A.7, is not a true 

intersection since the two curves differ in the values of the optimized 

coordinates, in particular 6.. 
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4> (degrees) 

Figure 4.A.7. Location of the CR^ and CRg points. 

Type-(A) curves: geometries optimized in the state. 

Type-(B) curves: geometries optimized in the state. 

Solid curves: minimum in Cg; dashed curves: geometries 

optimized in the other state. Optimized (6^,(g) values 

are shown in parentheses 



www.manaraa.com

119 

The intersection points CR,, and CRg of the two curves with the ICS 

were determined as follows. For the optimized coordinates (5., 7^" ... 

7^") of the A' state (solid A' line) we calculated the A" energies at 

various <f> values. The latter is plotted as the dashed line labelled A" in 

Figure 4.A.7 (it lies of course above the solid A" line). The crossing 

point CR^ of the solid A' line and the dashed A" line, is the point which 

the reduced surface E^(^) has in common with the ICS. Similarly, the 

dashed line labelled A' (which lies above the solid A' line) is a plot of 

A' energies calculated for the coordinates (5., 7^" ... 7^") optimized for 

A" (solid A" line). The crossing point CRj of the dashed A' and the solid 

A" line is the point which the reduced surface E2(^) has in common with the 

ICS. 

It is seen that the two points CR^ and CRj are fairly close to the 

earlier found point CR which lies on the steepest descent curve. All three 

points have Cg symmetry and lie on the ICS. One would therefore expect 

that the coordinates of CR, CR,, CRj would satisfy Eqs. (4.A.8) which 

defines the ICS to first order near CR. From Figure 4.A.7 and Eq, (4.A.16) 

one finds the (-values ((CR^) - -0.23°, ((CRg) - -1.73° which are indeed 

small. 

6. The free internal rotation of the CHg groups 

A very distinctive feature found on the potential energy surface of 

Valtazanos et. al. (1990) for values of $ larger than about 100° outside 

the Cg preserving subspace, i.e. for 6^ + 6% n»180° (n - integer) was an 

almost free, cogwheel-like, synchronized internal rotation of the two CHg 
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groups for fixed ring-opening angles. It was depicted by isoenergetic 

shelves in valleys which, approximately, followed the lines 6, + 6% " + 

n'180° (n - integer) on the contour panels $ - constant > 100°. The panel 

for $ - 100° computed with the ST0-3G basis set and the FORSl space is 

displayed in Figure 4.A.8a. The valley is seen to sway back and forth 

slightly from the line 6, + 6% - 90° and it contains slight minima, the one 

denoted by m lying at fi, + Sg ~ 37°. 

Since this is a very characteristic feature, it was considered 

important to confirm that it would be preserved by the more accurate 

calculations. To this end, we recalculated the entire panel for 0 - 100° 

at the (FORSl/ii) level and the resulting contours are displayed in Figure 

4.A.8b. While the absolute energies are of course different from those 

computed with the ST0-3G basis, the contour increment is the same as in 

Figure 4.A.8a (5 millihartree). It is seen that the overall topography is 

the same in both figures, namely valleys weaving around the average line 5^ 

+ &2 " (90° + n«180°) and separated by ridges following the lines 5^ + fig " 

n*180°. For the more accurate calculations, the maxima are somewhat 

broader and force a more undulatory character on the valleys. The valley 

minimum denoted by m occurs for 5^ - fig " 29°. However, the very slight 

barrier along the valley floor is almost the same for both calculations 

(2.5 Kcal/mole for the ST0-3G basis set, 3.1 Kcal/mole for the extended 

basis set (ii) of Section 4.A.2.2) and so is the energy difference between 

the minimum m and the maximum M (about 45 Kcal/Mole for both calculations). 

There exists a slight possibility that the differences between the 

contours in Figures 4.A.8a and 4.A.8b are somewhat exaggerated due to the 

method of calculation. For the minimal basis set calculations the contours 
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Figure A.A.8. Panels for <E>-100! A: FORSl/i, B:FORSl/ii. 

Increment: 5 mhartree; m:minimum; M: maximum 
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of each panel were based on 50 points. We found, however, that the contour 

map for 4» - 100° remained virtually unchanged when only the 25 points 

S " 20n^ 4" 10n2 f 6^ lOng 

n, - 0,2,4, ... (P-ng), ng - 1,3,5,7,9. 

were used. Therefore, the more accurate calculations were only performed 

at these points and the contours of both. Figure 4.A.8a and 4.A.8b, are 

based on this set of points. It is possible, although not very likely, 

that the two contour maps might look more similar to each other, had both 

been based on 50 points. 

Incidentally, the savings in computing time hoped for by calculating 

only 25 points was not realized because the reduction in the number of 

points was offset by the increase in computation needed for each point 

,62). This was so since, due to the larger distance between the 

individual 25 points, the initial approximations to the geometries of the 

12 secondary coordinates were poorer as were the starting orbitals for the 

MCSCF calculations. Consequently, convergence was considerably slower for 

both these iterative procedures. 
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B. Ab-initio Interpretation of the Electronic Rearrangements 

in Terms of Quasiatomic Orbitals 

1. Introduction 

Upon examining the energy changes that are exhibited by a potential 

energy surface with the complexity of that found for the cyclopropylidene 

ground state ring opening chemists can be expected to ask whether ab-initio 

theory can also produce insightful explanations for the computed energy 

changes. In view of the advances made over the past decade in quantum 

chemical calculations it stands to reason that one would hope for equally 

rigorous quantifications regarding the interpretation of such calculations 

in terms of chemical and physical concepts. 

A fundamental tenet of Intuitive chemical thinking is the 

interpretation of molecules in terms of interactions between atoms. Such 

an interpretation does not emerge trivially from ab-initio quantum 

chemistry because, in principle, all electrons in a molecule must be 

treated on an equal footing and molecular wavefunctions must be 

antisymmetrized with respect to all electronic coordinates. Moreover, 

decompositions in terms of atomic contributions present particular 

difficulties in the simplest and most widely used ab-initio method, namely 

the conventional Hartree-Fock self-consisted-field model. This is because, 

even in their most localized forms, self-consistent-field bonding orbitals 

necessarily cover several atoms. Any decomposition of such orbitals in 

terms of atomic contributions requires a split of individual bonding MO's 

into parts which are assigned to different atoms. Such segmentations (as 
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for example formalized by Mulliken's population analysis) are fundamentally 

arbitary, they tend to be basis-set dependent and, for calculations with 

extended basis sets, they often loose their meaning. Since 

multiconfigurational calculations are inherently more complex than the SCF 

approach, there may exists a perception that the problem of interpreting 

molecules in terms of atoms becomes even more difficult when proceeding 

from the SCF approximation to more sophisticated descriptions. In any 

event,there do not yet exist well established quantitative ab-initio 

procedures for the interpretation of bonding interactions between atoms in 

a molecular system, in particular when the latter is far from its 

equilibrium positions. 

Through the present investigation we hope to show that the situation 

is much more favorable when one considers molecular wavefunctions obtained 

within the FORS framework even though the latter is considerably more 

sophisticated than the self-consistent-field (SCF) model. It is a 

multi-configuration-self-consistent-field (MCSCF) approach that includes 

the major fraction of that part of the electron correlation energy which 

changes in the course of a reaction. Nonetheless the FORS model provides, 

without arbitary additional assumptions, an effective vehicle for the 

analysis of molecular systems in terms of atomic subsystems. It leads in a 

natural manner to definitions of deformed atoms in molecules and of 

interactions between them. 

We shall use this approach here to gain insight into the electronic 

rearrangements that occur during the cyclopropylidene ring opening. In 

particular, we shall examine the ring-opening barrier, the aliéné 

isomerization barrier and the cogwheel-type free synchronized rotations of 
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the CHg groups. The understanding obtained in this manner for this 

reaction is found to fit in with the spirit of physical organic chemistry. 

This result suggests that the developed analysis, based on FORS 

wavefunctions, can yield ab-initio interpretations which may furnish the 

foundation for a closer integration of ab-initio calculations and chemical 

intuition. 

2. Method of analysis 

2.1. Localized FORS MO's as Molecule-Adapted Deformed Minimal-Basis-Set 

Atomic Orbitals: Quasi-Atomic Orbitals. 

The nature of FORS wavefunctions is described in Section 4.A.2.3. 

Two facts are essential in the present context: 

(1) FORS wavefunctions are obtained by an MCSCF procedure in a full 

configuration space, i.e. they are expanded in terms of all 

configurations that can be generated from a given set of "reactive" 

or "active" orbitals; 

(ii) The number of these configuration-generating orbitals is equal to the 

number of conceptual minimal-basis atomic orbitals that are involved 

in the reaction under study. 

The interpretative procedure to be described here takes advantage of 

the circumstance that a full configuration space remains invariant when the 

molecular orbitals which generate the configurational basis are subjected 

to orthogonal transformations. Such orbital transformations do yield new 

configurational bases, but these span the same configuration space. The 

same (optimal) wavefunction can therefore be expressed as a superposition 
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of many different types of configurations. 

Several sets of FORS molecular orbitals prove useful for the case at 

hand. They will be called: 

(i) Quasi-atomic FORS MO's, 

(ii) Natural FORS MO's, 

(iii) Chemically localized FORS MO's. 

The various orbital bases, and the associated configurational bases 

generate different (but equivalent) descriptions of the arrangements of the 

electrons in a molecule and, thereby, illustrate different aspects of one 

and the same electronic distribution. They furnish complementary insights 

which can be combined to yield a balanced interpretation of the electronic 

structure. 

It is expedient to begin with the quasi-atomic FORS orbitals. This 

molecular orbital set results from localizing the configuration generating 

FORS MOs as much as possible. It has been demonstrated in detail in a 

series of previous publications, and it will be seen again here, that such 

maximally localized FORS MOs have the character of molecule-adapted 

deformed minimal-basis-set atomic orbitals. They effect an intrinsic 

partitioning of the electron population according to atoms and we therefore 

call them quasi-atomic MO's. 

In the case at hand we have a wavefunction with a nine orbital 

SCF-type core and a full reactive space generated by four electrons in four 

reactive orbitals. In such a case the core orbitals and the reactive 

orbitals must be localized separately. The localization of the core 

orbitals yields three inner shell orbitals on the three carbons, two 

carbon-carbon sigma bonds (for CqC^ and CqCj) and four carbon-hydrogen sigma 
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bonds. The localization of the four reactive FORS MOs on the other hand 

yields quasi-atomic molecular orbitals |0>, |0'>, |1>, |2> which, as we 

shall see, look very much like the reactive atomic valence orbitals that 

are qualitatively sketched in Figure 4.B.1 for the reactant 

(cyclopropylidene), the product (linear staggered aliéné) and the aliéné 

isomerization transition state (bent planar aliéné). 

2.2. Density and Population Analysis of a FORS Wavefunction. 

Meaningful insights into the electronic structure are obtained by 

examining the electron density kernel p of the FORS wavefunction. The 

expansion of p in terms of the aforementioned quasiatomic localized FORS 

MO's has the form 

p-lY^ \i/><u\ +52 PtJ UXJ'I . (4.B.1) 
f.j 

where the index i/ runs over the nine localized core MO's and the indices 

i,j run over the four localized reactive MO's, i.e. the quasi-atomic 

orbitals |0>, |0'>, |1>, |2>. 

Because of the orbital orthogonality the diagonal elements of the 

density matrix p lie between 1 and 2 and they are the rigorous occupation 

numbers of the localized FORS MOs. Since the latter are quasi-atomic 

orbitals, the p,-j yield therefore directly an unambiguous population 

analysis in terms of the orthogonalized deformed atoms in the molecule. 

Furthermore, since the bonding and antibonding contributions to the 

molecular energy can be shown to arise predominantly from interference 
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1 

CYCLOPROPYLIDENE TRANSITION STATE 

|0'> |0: 

ALLENE ISOMERIZATION T.S. ALLENE 

Figure 4.B.I. Qualitative sketch of quasiatomic FORS MO's 
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energy terms of the type p j j<i|h|j>, the off- diagonal density matrix 

elements Pjj have the significance of bond orders which locate bonding, 

nonbonding and antibonding effects between the different quasi-atomic 

orbitals, depending upon appropriate values of the resonance integrals 

<i|h|j>. From the example of a doubly occupied diatomic homonuclear 

molecular orbital, which is expressed in terms of two orthogonalized atomic 

orbitals as ^ - (A+B)/v^2, it can be seen that the maximum absolute value 

which this type of bond order can assume is unity. 

Further insight into the nature of the density matrix pjj is obtained 

by bringing it into diagonal form. This transformation yields the natural 

MO's. If the orthogonal matrix T diagonalizes the matrix p, then we have 

(r >3-)^ - (4.B.2) 

whence 

Pi j " ^in ^jn (4.B.3) 
n 

With the help of Eq. (4.B.3) the density is easily expressed as 

/) - 2 5^ |i/><i/| + E^nlV'nXV'nl (4.B.4) 
n 
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where the 

(4.B.5) 
j 

are the natural FORS MO's expressed in terms of the quasiatomic FORS MO's 

. The eigenvalues are the occupation numbers of the natural FORS MO's 

The quasiatomic and the natural representations of the density can be 

combined into a decomposition scheme which is conceptually close in spirit 

to Mulliken's population analysis. It is obtained by defining the 

intermediate population contributions 

<4.6.6) 

which can be summed in two ways, namely 

-Pii and E Pn-^n (4.B.7) 
n i 

Similarly the bond orders can be decomposed into natural orbital 

contributions 
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(4.B.8) 

where 

P"j -^nVjn (4.B.9) 

The quantities p"jj (i - and j) contain all the information that is 

contained in the quantities Pjj, and This FORS 

population-bond-order analysis implements the conceptual objectives of 

Mulliken's (1955) analysis in terms of a basis-set independent formalism 

with a non-arbitary intrinsic population definition that, moreover, does 

not suffer from the kind of problems illustrated, e.g., by Mulliken (1977, 

page 37, Figure 4). 

The interpretative significance of the natural orbitals derives from 

the fact that they furnish a division of the molecular orbitals into 

strongly occupied ones, which reveal "where the action is", and into weakly 

occupied ones which are required to provide the wavefunction with the 

flexibility to describe what are generally considered the effects of 

electron correlation. It is the FORS population analysis of the strongly 

occupied molecular orbitals that would correspond to Mulliken's population 

analysis of self-consistent-field wavefunctions where all MO's are natural 

orbitals with occupation number 2. The FORS population analysis provides 

in addition a complementary analysis of the correlating orbitals. 

In section B.4 we shall find that, in some cases, a third set of FORS 

molecular orbitals is useful to facilitate chemical insight. They are the 
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FORS analogues to the traditional localized SCF orbitals and are obtained 

by localizing the strongly occupied FORS MO's and the weakly occupied FORS 

MO's separately as proposed by Edmiston and Ruedenberg (1963). The 

resulting molecular orbitals still yield quite small off-diagonal density 

matrix elements and, hence, are still near-natural orbitals. They combine 

the separation into strong and weakly occupied orbitals with the 

localization into regions of chemical interest. For this reason we shall 

call them chemically localized FORS MO's (as contrasted to the 

atom-localized quasiatomic FORS MO's). They were called chemically adapted 

FORS MO's by Ruedenberg et al. (1982a). Sometimes it is illuminating to 

formulate the population and bond order analysis in terms of these 

orbitals. 

2.3. Configurational Analysis of a FORS Wavefunction. 

The configurations which are generated by the localized FORS MO's are 

also instructive. Since the localized MO's have the character of 

molecule-adapted minimal-basis atomic orbitals, the configurations 

generated by them have the formal appearance of valence-bond structures 

between quasi-atomic orbitals. In the case at hand, they are spin-adapted 

antisymmetrized products (SAAF's) which look like valence bond structures 

between the localized reactive FORS MO's (0>, |0'>, |1>, |2> of Figure 

4.B.I. They form three groups: Four neutral configurations which have the 

formal appearance of covalent VB structures: 

Co°Ci°C2°: |0^12>, |0'^12>, |00'12S>, |00'12T> 
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where S and T imply the four-electron singlet and triplet spin couplings; 

fourteen "singly-ionic" configurations: 

c/sT : |0Y>, |0'^1^>, |00'1^> 

C/Cg- |0^2^>, |0'%, |00'2^> 

co'cr : |021^>, |0'21^> 

Co'Cr : |0^0'2>, |0'^02> 

Co'Cg" : |012^>, |0'12^> 

Cq'CZ' : |0^0'1>, |0'^01> : 

and two "doubly-ionic" configurations: 

C^'CyC^ : |0^0'^>, 

The explicit forms of the listed wavefunctions (SAAPs) are defined in 

Section 4.A.2.3. The orbital symbols and the numbering of atoms is 

apparent from Figure A.A.I. 

The physical meaning and chemical interpretation of these SAAP's 

differs however significantly from that of traditional VB structures 

because, their quasi-atomic character notwithstanding, the localized FORS 

MO's are mutually orthogonal and so are therefore the SAAPs constructed 

from them. 

While it is still true that, in the case of nonpolar bonding, such as 

encountered here, the dominant configuration is a SAAP which looks like 

a covalent VB structure, it is readily seen that this configuration 

embodies no interference (resonance) interactions between the quasi-atomic 
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localized FORS orbitals when the latter are orthogonal. Its energy 

contains only intra- atomic deformation energies and those interatomic 

effects which arise from non-bonded repulsions and coulombic interactions. 

We therefore call it "neutral" (i.e. without charge tranfer) or "unshared" 

rather than "covalent". 

Electron sharing between atoms results from the admixture of 

additional configurations which have the formal appearance of ionic VB 

structures. They describe electrons moving back and forth between the 

orthogonal molecule-adapted quasi-atomic orbitals on different atoms. It 

is these "electron jumps" which lead to chemical bonding because it is 

found that the essential, energy lowering interference (resonance) terms 

Pjj<i(h|j> are embedded in the interaction matrix elements <$Q|H!$+.>. The 

magnitudes of the coefficients of these electron hopping configurations 

provide therefore an indication of where bonds are established so that 

inferences can be drawn from the FORS-CI expansion. These matters will 

become clearer by an examination of the specific cases. 

On the other hand, the configurations in terms of the natural MO's 

have the well known property of compacting the configurational expansion. 

In general they can be grouped into "principal" configurations of the SCF 

type and "secondary" configurations providing electron correlation for the 

former. 

2.4. The Localization Process. 

Since the localization of FORS MO's into quasi-atomic form is a 

fundamental prerequisite of the present analysis, it requires further 

comment. 
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An analysis such as the one developed here is useless unless the 

entire procedure is basis-set-independent. In order to establish this 

independence we have performed the analysis for the minimal-basis-set as 

well as for the extended basis sets optimized geometries of the important 

species of the reaction surface. The results of the former analysis are 

discussed in Sections B.3, 4, 5; the results of the latter analysis are 

discussed in Section B.6. The comparison of the two analyses establishes 

(i) that it is in fact possible to localize FORS MO's into quasiatomic 

form, in agreement with conclusions of earlier investigations by Ruedenberg 

et. al. (1982a, b, c) and (ii) that these quasi-atomic MO's are indeed 

basis-set-independent orbitals which are intrinsic to the wavefunction. 

In the present investigation, all localizations were accomplished 

with the Edmiston-Ruedenberg (1963) procedure. However, since it is now 

established that the localized FORS MO's have quasi-atomic character, it 

would seem desirable in future applications to maximize this atomic 

character. One way to do this is to maximize the projection of these MO's 

on the orbital space apanned by the relevant (core and/or valence) SCF or 

MCSCF orbitals of the free atoms. 

The results of Section B.6.1 (Table 4.B.17) indicate that the two 

localization procedures give very similar results in the present case. 

3. The ring opening barrier 

3.1. Quasi-atomic FORS MO's. 

In order to gain insight into the origin of the barrier, we consider 

the wavefunctions for the geometry of the reactant and for that of the 
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transition state. 

Reactant 

For cyclopropylidene, one of the reactive natural MOs has Bj symmetry 

and it is already localized on the central carbon. It corresponds to the 

ff-orbital |0'> of Figure 4.B.I. We therefore applied the localization only 

to the three natural MOs of symmetry and this procedure yields orbitals 

corresponding to |0>, |1>, |2> of Figure 4.B.I. Contours of these four 

localized reaction orbitals as well as of the localized core orbitals 

mentioned in Section 4.B.2.1, corresponding to the six sigma bonds, are 

depicted in panels A to F of Figure 4.B.2. The contours for the CC bonds 

(shown on panel A) and for the reactive orbitals |1>, |2> (shown on panel 

D) are drawn in the CGC plane. The contours of the orbitals |0> (panel E) 

and |0'> (panel F) are drawn in the symmetry plane perpendicular to the CCC 

plane. The contours for any two CH bonds on the same side of the CCC plane 

are also shown on one panel (panels B or C) and drawn in the plane 

containing the carbon atoms C^, Cg and the two hydrogen atoms. The bonding 

character of the sigma bonding MOs and the non-interactive character of the 

orbitals |0> and |0'> are apparent. It is moreover seen that the orbitals 

|1> and I2> have the character of two strongly overlapping atomic orbitals 

which can establish a bond between them. We reiterate that the four 

localized reactive orbitals |0>, |0'>, |1>, |2>, their manifestly atomic 

nature notwithstanding are in fact mutually orthogonal optimized molecular 

orbitals of the FORS wavefunction. They are molecular orbitals which have 

the character of molecule-adapted deformed atomic orbitals, i.e. they are 

quasi-atomic MO's. 

The drawings also contain the projections of the molecular skeleton 
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CORE ORB I TA LS 

REACTION ORBITALS 

Figure 4.B.2. Quasiatomic FORS MO's for cyclopropylidene (panels A to F) 

and for the averaged transition state (panels a to f ). 

Solid lines - positive; dashed lines - negative 
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on the plane in which the orbital is drawn. Therefore, in panels E and F 

one can see the inclinations of the CH bonds with respect to the CCC ring 

which appears as a line. These inclinations are Just the inclinations of 

the planes in which the contours of panels B and C are drawn. The CCC ring 

therefore appears as a triangle on these panels. It is also apparent that 

the orbital |1> on atom C^ points in the direction of one member of a 

roughly tetrahedral hybrid AO quadruple whose other three members point in 

the bent-bond directions towards the neighboring atoms , Hg, Cq (see 

Figure 4.A.1 for the numbering of atoms). The analogous statement is true 

for the orbital |2> on Cg. 

Transition state 

In choosing the transition state geometry, we have to keep in mind 

that, in order to establish the basis-set independence of the analysis, the 

results for the minimal basis set calculations must be compared with those 

for the extended basis. For the latter the transition state has however Cg 

symmetry while the former yielded two transition states of C^ symmetry with 

a very flat surface between them. Since the point halfway between these 

two transitions states lies only 0.2 kcal/mole higher and, moreover, has Cg 

symmetry, we choose to carry out the analysis for the minimal basis set 

calculation at this "average transition state" with the coordinates ~ 

84.25: Sy - 51.15? «2 ' 128.85? 

Although the CCC plane is no longer a plane of symmetry for this 

geometry, there still exists an orbital on the central carbon which has 

essentially tt character. We dealt with this problem as follows. First we 

determined the localized orbitals in the space of all four reaction 
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orbitale and this gave the orbitals |1> and |2> as well as two orbitals on 

the central carbon which were of the familiar "rabbit-ear" type, as found 

e.g. on oxygen in HgO. We then simply formed the normalized sum and 

difference of the two rabbit-ear orbitals to yield |0> and |0'>. Contours 

for these orthogonal localized FORS MOs are shown in Figure 4.B.2 on panels 

a to f opposite the corresponding orbitals of the reactant. 

From panels e and f we see that the non-interacting orbitals on the 

central carbon are now somewhat tilted. By combining the projective views 

of the CH bonds given on panels b and e one can visualize the direction of 

the CH bonds above the CGC plane in three dimensions. By doing the same 

for panel c and e we can visualize the directions of the CH bonds below the 

CCC plane. As before, the contours in panels b and c are drawn in the 

respective planes containing all four bonded atoms. The direction of 

orbital |1> can again be estimated by imagining it to be the fourth orbital 

of an approximately tetrahedral hybrid AO quadruple on the carbon C^, with 

the other three hybrid AOs pointing towards the three bonded neighbor atoms 

Hi, H^,, Cq (see Figure 4.A.1 for the numbering of atoms). The analogous 

statement holds for orbital |2>. The projection of the central carbon atom 

on panel d indicates that 11> and 12> both point somewhat above the CCC 

plane. The actual angle of elevation is 21.4! 

3.2. Population and Bond Order Analysis. 

Reactant 

The density matrices between the four localized reaction orbitals 

just discussed are listed in Table 4.B.1A for the reactant 

cyclopropylidene. From it, we can draw the following inferences. 
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Table 4.B.1, Occupation numbers and bond orders for the reactive 

quasiatomic FORS MO's of the reactant and of the ave 

transition state 

A. Density matrix elements p^ of reactant (cyclopropylidene) 

|0> | 0 '>  ll> |2> 

|0> 

|0'> 

|1> 

|2> 

1.93086 

0 

•0.00383 

•0.00383 

0 

0.06899 

0 

0 

-0.00383 

0 

1.00008 

0.97114 

-0.00383 

0 

0.97114 

1.00008 

B. Density matrix elements pij of averaged transition state 

|0> |0'> ll> | 2>  

|0> 

|0'> 

ll> 

| 2 >  

1.95653 

0.07416 

•0.02901 

•0.02901 

0.07416 

0.33098 

0.46349 

0.46349 

•0.02901 

0.46349 

0.85625 

0.71324 

•0.02901 

0.46349 

0.71324 

0.85625 
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Since the diagonal elements, which represent the occupation numbers 

of the quasi-atomic orbitals, are exactly unity for the orbitals |1> and 

|2>, and sum to exactly 2 for the orbitals (0> and |0'>, there is no 

interatomic charge transfer between the atoms. From the off-diagonal 

elements, which are the bond orders, a strong bonding interaction is 

inferred to exist between orbitals |1> and |2>, which closes the ring in 

cyclopropylidene. The orbital |0> is a lone pair, it has only a very slight 

non-bonded repulsions with respect to orbitals |1> and |2>. The fact that 

the bond order between |0> and |0'> is zero implies that the slight 

occupation of orbital |0'> is entirely due to two-electron interactions, 

i.e. it serves to correlate the motions of the electrons in orbital |0>. 

These inferences are confirmed and illustrated in a different way through 

the natural FORS MO's which diagonalize the density matrix. Each column in 

Table 4.B.2 lists the expansion coefficients of one natural FORS MO in 

terms of the quasi-atomic localized FORS MO's |0>, |0'>, |1>, |2>. From 

these expansion coefficients and from the occupation numbers listed in the 

last two rows, the character of each natural FORS MO is apparent. 

In the reactant (Table 4.B.2A) nearly two electrons occupy the 

natural orbital in the first column. Since it consists to 98% of the 

quasi-atomic s orbital |0>, it essentially describes a s lone pair on the 

central carbon and is denoted by |lp>. Similarly, nearly two electrons 

occupy the natural orbital in the third column. Since it consists to 98% 

of the in-phase linear combination of the quasi-atomic orbitals |1> and )2> 

it essentially describes a bonding electron pair between the end carbons 

and is denoted by |12b>. The weakly occupied natural orbital in the second 

column consists entirely of the quasi- atomic p-orbital (0'> which has a 
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Table 4.B.2. Natural FORS MO's for Reactant and Averaged Transition State 

A. Cyclopropylidene 

|lp> |lpc> |12b> |12c> 

|0> 0.991418 0 -0.130730 0 

|0'> 0 1 0 0 

ll> 0.092440 0 0.701038 0.707107 

|2> 0.092440 0 0.701038 -0.707107 

Nn 1 .930145 0.068991 1.971927 0.028937 

Sum 1.999136 2.000864 

Averaged Transition State 

|lp> |lpc> |10'2b> |10'2c> 

|0> 0 996130 -0.044076 0.076035 0 

|0'> 0 010221 0.917379 0.397883 0 

ll> -0. 061723 -0.279708 0.646493 0.707107 

|2> -0. 061723 -0.279708 0.646493 -0.707107 

Nn 1. 960883 0.044782 1.851327 0.143008 

Sum 2.005665 1.994335 



www.manaraa.com

143 

node in the region of the lobe of |lp>. It thus provides out-of-plane 

correlation for the lone electron pair in the natural orbital |lp> and it 

is therefore denoted by |lpc>. Similarly, the weakly occupied natural 

orbital in the fourth column consists of the antibonding linear combination 

of the quasi-atomic orbitals |1> and |2> which have a node in the region of 

the lobe of |12b>. It thus provides left-right correlation for the bonding 

electron pair in the natural orbital |12b> and it is therefore called 

|12c>. With the inclusion of the correlation orbitals there are exactly 

two electrons on Cq and another two electrons in the C^Cg bond. 

It should be noted that, since the transformations listed in Table 

4.B.2 are orthogonal, they can also be read in the inverse directions, i.e. 

they also represent the expansion of the quasi-atomic orbitals in terms of 

the natural orbitals. Thus, e.g., the orbital |1> results from linearly 

superposing the natural orbitals |lp>, |12b>, and |12c> with the 

coefficients listed in the row headed by the label |1>. 

The conclusions inferred for the populations from the localized and 

the natural representation can be intelligibly combined by means of the 

quantities p"^j - T^j„ which were defined by Eq. (4.B.6) of Section 

4.B.2.2. This approach leads to the summary population analysis given in 

Table 4.B.3A. The quantities p"jj form the center bloc. Each column adds 

up to the value in the row labelled N^, i.e. the populations of the natural 

orbitals. Each row adds up to the value in the column labelled pj^, i.e. 

the populations of the quasi-atomic orbitals. Thus, the p",-,- yield an 

atomic breakdown of the natural orbital population as well as a 

natural-orbital breakdown of the atomic populations - as expressed by the 

Eqs. (4.B.7) of Section 4.B.2.2. The table shows that the population in 
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the s quasi-atomic orbital |0> essentially comes from the lone pair natural 

orbital |lp> and that the populations of 11> and 12> come essentially from 

the bonding orbital |12b>. It furthermore shows how the smaller population 

contributions due to correlation as well as orbital delocalization round 

out the total population picture. Thus the naive qualitative reasoning, 

while correct in principle, must be tempered in two respects in order to 

fit in with the quantitative ab-initio analysis: First, the concept of a 

pure atomic orbital must be replaced by that of a deformed quasi-atomic 

orbital. Secondly, even these deformed atomic orbitals get slightly mixed 

when the natural orbitals are formed which describe the lone pair, bonding 

and correlation roles of electrons. 

The corresponding bond order decomposition in terms of natural 

orbital contributions, corresponding to Eqs, (4.B.8) and (4.B.9) of Section 

4.B.2.2 is given in Table 4.B.4A. It shows that the bond order between |1> 

and |2> arises essentially from the bonding orbital |12b>. 

Transition state 

The density matrix of the transition state in Table 4.B.1B shows that 

there has occured a substantial charge transfer from the end carbons to the 

central carbon atom. Each of the orbitals |1> and |2> has given up 0.1438 

electrons. Almost all of the total amount of 0.2877 electrons, namely 

0.2620 electrons, has been donated to the orbital |0'> on the central 

carbon; only 0.0257 has gone to |0>. The substantial positive bond orders 

between the orbitals |0'>, |1>, |2> imply that we have an in-phase 

three-center delocalization of the two electrons which, in the reactant, 

formed the |1>-|2> bond. The reason must be that, due to the increase in 
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Table 4.B.3. FORS population Analysis for Reactant and Averaged Transition 

State 

A. Cyclopropylidene 

N a t u r a l  F O R S  M  0  '  s  

1lp> 1lpc> 112b> 112c> Pii Atoms 

Quasi- |0> 1.89716 0 0.03370 0 1.93086 1.99985 

atomic |0'> G 0.06899 0 0 0.06899 

FORS ll> 0.01649 0 0.96911 0.01447 1.00007 1.00007 

MO's |2> 0.01649 0 0.96911 0.01447 1.00007 1.00007 

Nn 1.93015 0.06899 1.97193 0.02894 

Sum 1.99914 2.00086 4 4 

B. Averaged Transition State 

N a t u r a l  F O R S  M  0  '  s  

1lp> 1lpc> |10'2b> |10'2c> Pii Atoms 

Quasi- |0> 1.94574 0.00009 0.01070 0 1.95653 2.26750 

atomic |0'> 0.00020 0.03769 0.29309 0 0.33098 

FORS |1> 0.00747 0.00350 0.77377 0.07150 0.85624 0.85624 

MO's |2> 0.00747 0.00350 0.77377 0.07150 0.85624 0.85624 

Nn 1.96088 0.04478 1.85133 0.14301 

Sum 2.00566 1.99434 4 4 
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distance between the end carbons (from 1.53 to 1.94 A), the interaction 

between |1> and |2> has considerably weakened and, as a consequence, the 

orbitals |1> and |2> have rotated in order to strengthen their 

interactions with the closer orbital |0'>. This accounts for the rotations 

of the hydrogen atoms as well as for the tilting of the |0'> orbital 

evident in Figure 4.B.2f. The relatively large bond order between orbitals 

I1> and |2> is the consequence of the in- phase |1>-|0'>-|2> delocalization 

and does not imply a strong direct |1>-|2> bond since the resonance 

integral <l|h|2> is presumably small. The energetic gain obtained from the 

establishment of the delocalized three-center bond |1>-|0'>-|2> is of 

course partly offset by the need for substantial electron donation to the 

central carbon which clearly does not come free. Thus we conclude that the 

energy barrier results from the breakage of the |1>-|2> bond and that its 

smallness results from the establishment of the three-center bond through 

electron donation into the previously empty orbital |0'>. 

The natural orbital |lp> of the first column of Table 4.B.2B still 

describes a lone electron pair essentially lodged in the quasi-atomic a 

orbital |0> on the center atom. The major change compared to 

cyclopropylidene is the in-phase delocalization of the bonding natural 

orbital of the third column of Table 4.B.2B over the quasi-atomic n-orbital 

|0'> of the central atom. We have therefore labelled it |10'2b>. The 

natural orbital |lpc> of the second column is still essentially the 

quasi-atomic jr-orbital |0'>, but it is somewhat delocalized over the 

orbitals |1> and |2> in an out-of-phase (antibonding) fashion. This 

orbital therefore still essentially provides out-of-phase correlation for 

the lone pair natural orbital |lp>, but it also provides some bond-parallel 
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Table 4.B.4. FORS Bond Order Analysis for Reactant an Averaged Transition 

State 

A. Cyclopropylidene 

N a t  u r a 1 F O R S  M 0 ' s 

|lp> |lpc> |12b> |12c> Pij 

Quasi- (00') G 0 G 0 G 

atomic (01) 0.17689 0 -0.18072 0 -0.00383 

FORS (02) 0.17689 0 -0.18072 G -0.00383 

MO (O'I) G 0 G G 0 

pairs (0'2) G G G G G 

(12) G.01649 G 0.96911 -0.01447 0.97113 

B. Averaged Transition State 

N a t u r a l  F O R S  M  G  '  s  

1 lp> 1 IpO |10'2b> |10'2c> Pij 

Quasi- (00') 0.01996 -0.00181 0.05601 G 0.07416 

atomic (01) -0.12056 0,00055 0.09100 G -0.02901 

FORS (02) -0.12056 0.00055 G.G91GG G -0.02901 

MO (O'I) -0.00124 -0.01149 0.47621 G 0.46348 

pairs (0'2) -0.00124 -G.G1149 0.47621 G 0.46348 

(12) 0.00747 0.00350 0.77377 -0.07150 0.71324 
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correlation for the three-center bond orbital |10'2b>. The major 

bond-parallel correlation for this three- center bond still comes from the 

natural orbital |10'2c> which, in fact, has a higher occupancy than it had 

in cyclopropylidene. 

The information from the localized and natural density decompositions 

are again integrated in the form of a population analysis and a bond order 

analysis in Tables 4.B.3B and 4.B.4B. The comparison of these tables with 

the Tables 4.B.3Â and 4.B.4A reconfirms that the bonding orbital |10'2b> 

has now delocalized its population over the n-orbital |0'> on the central 

carbon. Its correlating orbital |10'2c> has increased its population 

sevenfold presumably because, due to the longer -Cg distance, it is now 

much less antibonding and therefore more effective for correlation. The 

usage of the atomic orbital |0'> for delocalized bonding in the natural 

orbital |10'2b> has conversely induced an antibonding delocalization of the 

correlating orbital |lpc> over the atomic orbitals |1> and |2>. Thereby it 

has become less effective for correlating the lone pair orbital |lp> which 

has concentrated more on the quasi-atomic a orbital |0>. The fact that this 

orbital on the central carbon is still essentially doubly occupied 

indicates that its energy is still sufficiently below that of the 

quasi-atomic îr orbital |0'>. 

3.3 FORS Configuration Analysis. 

We now examine the configurations (SAAPs - Spin Adapted 

Antisymmetrized Products) which are generated by the discussed localized 

FORS MOs. They are listed, in the order discussed in Section 4.B.2.3, in 

the first column of Table 4.B.5. The second column contains the 
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corresponding expansion coefficients for the wavefunction of the reactant; 

the third column contains the wavefunction expansion coefficients for the 

molecule at the considered approximate transition state. Although the 

qualitative meaning of the configurations is the same, the orbitals are of 

course quantitatively different in the two cases as shown in Figure 4.B.2. 

Reactant 

For the reactant the dominant configuration is the SAAP |0 12> 

corresponding to a sigma lone pair on Cq and one reaction electron each on 

and Cg. The SAAP |0'^12> clearly provides electron correlation for the 

sigma lone pair. We therefore consider 

- 0.9827|cfl2> - 0.1855|0'^12> 

as the normalized neutral base function without electron sharing (See 

Section 4.B.2.3). It has a weight of 62% in the wavefunction. The double 

occupation of the sigma orbital |0> is due to the fact that, for such small 

CGC opening angle, the jr-atomic orbital |0'> has a significantly higher 

orbital energy. 

As explained above in Section 4.B.2.3, the base function "flfg by itself 

does not establish a bond between the orbitals |1> and |2>. In the present 

2 2 case, covalent bonding arises from the admixture of the SAAPs |0 1 > and 

|0^2^> which, together with the SAAPs |0'^1^> and |0'^2^> practically 

account for the remaining 38% of the wavefunction. It is readily verified 

that these terms can be generated in just the right proportion from the 

base function itg by the substitution operations 
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Table 4.B.5. Expansion coefficients of wavefunctions for cyclopropylldene 

and the averaged transition state in terms of configurations 

generated from quasiatomlc FORS MOs 

SAAPS Cyclopropylldene Transition State 

C°oCV°2 : |cfl2> 

|0'^12> 

|00'12S> 

100'12T> 

0.772606 

-0.145750 

0 . 0  
0 . 0  

0.746158 

-0.124982 

0.046221 

0 . 0  

C ,C 2 : I0^1^> 

|0'^1^> 

|00'1^> 

0.429145 

-0.081054 

0 . 0  

0.265866 

•0.041151 

0.029490 

C ,C 2 : |0^2^> 

|0 'V> 
|00'2^> 

0.429145 

-0.081054 

0 . 0  

0,265866 

•0.041151 

0.029490 

C'oC+1 |0^0'^> 

10'^02> 

0 . 0  

0.007386 

0.365665 

•0.020085 

C qC 1 : |021^> 

|0'21^> 

0.011068 
0 . 0  

0.019080 

0.003320 

C qC 2 : |Cfo'l> 
|0'^01> 

0 . 0  
0.007386 

0.365665 

•0.020085 

C qC 2 : |012^> 

(0'12^> 

0.011068 

0 . 0  

0.019080 

0.003320 

Co^'CiV : 

C0^*C/C2': 

|0^0'^> 

I1^2^> 

•0.001957 

•0.003294 

0.100078 

•0.001356 
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RI^2*B - 0.982(0^2^> - 0.185|0'^2^>, 

Rj^I^B - 0.982|0% - 0.185|0'^1^>, 

where the orbital replacement operator Rj^j - {|i>-*|J>} can be interpreted 

as allowing an electron to jump from orbital |i> to orbital |j>. As 

discussed in Section 4.B.2.3, the admixture of these configurations 

introduces into the wavefunction electron sharing between the orthogonal 

orbitals |1> and |2> and, as a consequence, there occurs an energy lowering 

due to the interference terms in the hamiltonian matrix elements between îfg 

and Ri^2*B' this energy lowering which establishes the bond 

between orbitals |1> and |2>. 

Transition State 

For the transition state we find from the third column of Table 

4.B.5 the very similar normalized base function without electron sharing 

- 0.986|cfl2> - 0.165|0'^12> 

which here has a weight of 57%. In this case the substituted 

configurations R^^j^b account however for only 15% of the 

wavefunction, which indicates that electron sharing between |1> and |2> is 

energetically much less profitable, undoubtedly because of the greater 

distance between the carbon atoms 1 and 2. The remaining 28% are mainly due 

to configurations that describe electron sharing between and the 

central atom Cq, notably 
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|0^0'^> - Ri,o,|0^12>, 

|0^0'1> - R2,O,|0^12>. 

These SAAPs describe electron donation from |1> and |2> to the previously 

empty quasi-atomic Tr-orbital |0'> on the central atom and therefore a 

delocalization of electrons from orbital |1> over orbital |0'> to orbital 

| 2 > .  

The comparison of the wavefunction expansion of the reactant with 

that of the transition state thus shows again that the existence of the 

barrier is due to the loss of the covalent binding between the orbitals |1> 

and |2>, and that its small value is related to a compensating energy 

lowering which arises from delocalization of the same two electrons over 

the orbitals |1>, |0'>, |2>. 

4. The Aliéné Isomerization barrier 

In order to gain insight into the energy barrier to the 

isomerization of singlet aliéné, we examine the wavefunctions for the 

staggered linear equilibrium conformation and for the planar, bent ( ( f> -

133) transition state. No orbital plots are displayed since, from what 

has been seen before, the shapes and directions of the localized FORS MO's 

are manifestly as drawn in Fig. 4.B.I. For the linear conformation, 11> 

and |0> are parallel quasiatomic p-orbitals whereas |0'> and |2> are 

parallel quasiatomic p-orbitals at right angles to |1> and (0>. For the 

bent planar geometry, the orbitals |1>, |2> and |0'> are quasiatomic 

p-orbitals perpendicular to the molecular plane whereas |0> is a 
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quasiatomlc s-p hybrid-type orbital in the molecular plane pointing 

"backwards", i.e. away from the end carbons. 

4.1. Staggered Linear Aliéné 

The density matrix for the quasiatomic FORS MO's is listed in Table 

4.B.6A. It is apparent that bonding exists between orbitals (0> and (1> as 

well as between orbitals |0'> and |2>. Concomitantly charge in the amount 

of 0.05 electrons is transferred from |0> to |1> and similarly from |0'> to 

|2>. Table 4.B.7A lists the natural orbitals. For each of the two bonds 

(01) and (0'2) we have one bonding and one correlating orbital. The 

population and bond order analyses, given in Tables 4.B.8A and 4.B.9A, 

quantify the preceding remarks further in a self-explanatory way. 

The configurational expansion coefficients of the wavefunction in 

terms of the corresponding SAAPs are given in Table 10. The neutral base 

function without electron sharing is 

- 0.997|010'2S> + 0.069|010'2T>. 

The predominant term is the singlet coupled SAAP coupling |0> with |1> and 

|0'> with |2>, embodying the bond between |0> and |1> as well as the bond 

between (0'> and |2>. For the cases to be discussed in Section 4.B.5 it is 

not possible to cast in such a form because, in those cases, the 

Hund's-rule triplet-singlet effect in the central atom is stronger than the 

weak TT-bonding effects so that the triplet effect dominates. Here, in 

aliéné, the strong covalent rr-bonding effects dominate over the Hund's-rule 

effect at the central carbon, contributes 53% to the wavefunction. 
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Table 4.B.6, Occupation numbers and bond orders for the reactive 

quaslatomic FORS MO's of Linear and Bent Aliéné 

A. Density matrix elements pjj of Product (Linear Aliéné) 

Pij |0> |0'> |1> |2> 

|0> 0.94821 0 0.88684 0 

|0'> 0 0.94821 0 0.88684 

ll> 0.88684 0 1.05179 0 

|2> 0 0.88684 0 1.05179 

B. Density matrix elements pjj of Bent Aliéné 

Pij |0> |0'> |1> (2> 

|0> 1.00000 0 0 0 

|0'> 0 0 97708 0 59743 0.59743 

|1> 0 0 59743 1 01146 0.01146 

|2> 0 0 59743 0 01146 1.01146 
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Table 4.B.7. Natural FORS MO's for Linear and Bent Aliéné 

A. Linear Aliéné 

|01b> |01c> |0'2b> |0'2c> 

|0> 0. 686185 0.727427 0 0 

|0'> 0 0 0. 686185 0.727427 

ll> 0. 727427 -0.686185 0 0 

|2> 0 0 0. 727427 -0,686185 

Nn 1. 888351 0.111649 1. 888351 0.111649 

Sum 2. 000000 2. 000000 

B. Bent Aliéné 

|lp> |12n> |10'2b> |10'2c> 

|0> 1 0 0 0 

|0'> 0 0 0 697454 0.716629 

|1> 0 0 .707107 0 506733 -0.493175 

|2> 0 -0 .707107 0 506733 -0.493175 

Nn 1.000000 1 .000000 1. 845206 0.154794 

Sum 2.000000 
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Table 4.B.8. FORS population Analysis for Linear and Bent Aliéné 

A. Linear Aliéné 

N a t u r a l  F O R S  M  0  '  s  

|01b> |01c> |0'2b> |0'2c> Pit Atoms 

Quasi-

atomic 

FORS 

HQ's 

|0> 

|0'> 

ll> 

|2> 

0.88913 0.05908 

0 0 

0.99922 0.05257 

0 0 

0 0 

0.88913 0.05908 

0 0 

0,99922 0.05257 

0.94821 

0.94821 

1,05179 

1.05179 

1.89642 

1.05179 

1.05179 

Nn 
Sum 

1.88835 0.11165 

2.00000 

1.88835 0.11165 

2.00000 4 4 

B. Bent Aliéné 

N a t u r a l  F O R S  M  0  '  s  

1lp> 112n> |10'2b> |10'2c> Pii Atoms 

Quasi-

atomic 

FORS 

MO's 

|0> 

|0'> 

ll> 

|2> 

1.00000 0 

0 0 

0 0.5 

0 0.5 

0 0 

0.89759 0.07950 

0.47381 0.03765 

0.47381 0.03765 

1.00000 

0.97709 

1.01146 

1.01146 

1.97709 

1.01146 

1.01146 

Nn 

Sum 

1.00000 1.00000 1.84521 0.15479 

2.00000 4 4 
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A. Linear Aliéné 

N a t  u r a 1 F O R S  M 0 ' s 

|01b> |01c> |0'2b> |0'2c> Pij 

Quasi- (00') 0 0 0 0 0 

atomic (01) 0.94257 -0.05573 0 0 0.88684 

FORS (02) 0 0 0 0 0 

MO (O'l) 0 0 0 0 0 

pairs (0'2) 0 0 0.94257 -0.05573 0.88684 

(12) 0 0 0 0 0 

B. Bent Aliéné 

N a t  u r a 1 F O R S  M 0 ' s 

|lp> |12n> |10'2b> |10'2c> Pij 

Quasi- (00') 0 0 0 0 0 

atomic (01) 0 0 0 G 0 

FORS (02) 0 0 0 G 0 

MO (O'l) 0 0 0.65214 -0.05471 0.59743 

pairs (0'2) 0 0 0.65214 -0.05471 0.59743 

(12) 0 -0.5 0.47381 0.03765 0.01146 
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Table 4.B.10 also confirms that covalent bonding is due to electron sharing 

between the orbitals |1> and |0> and between the orbitals |2> and |0'> as 

is established by the SAAPs generated from «Pg by the electron-hopping 

replacements , Rg^,, Rq.^g namely: 

4.2. Bent Planar Allent - 133.3) 

It is instructive to compare the electronic structure of the bent 

planar aliéné transition state ("all-T.S.") not only with the linear 

staggered aliéné conformation but also with the averaged ring opening 

transition state of cyclopropylidene ("eye- T.S.") discussed in Section 

4.B.3. Both conformations have the same Cs symmetry plane but they differ 

in two respects, viz: the all- T.S. has a ring opening angle <t> - 133.3° and 

both CHg groups lie in the CCC plane so that the molecule has symmetry, 

whereas the cyc-T.S. has <f) - 84° and the CHg groups are tilted against the 

CCC plane so that the symmetry is only Cg. 

The population-bond order matrix is listed in Table 4.B.6B, the 

expansions of the natural orbitals in terms of the quasiatomic orbitals are 

listed in Table 4.B.7B, the population analysis is given by Table 4.B.8B 

and the bond order analysis is given by Table 4.B.9B. The corresponding 

data for the cyc-T.S. were given in Tables 4.B.1B, 4.B.2B, 4.B.3B and 

4.B.4B, A synoptic examination of the four tables for each of the two 

- |0^20'> 

Ro.I'PB - |1^20'> 

Ri-ORZ-O'I'B -

- |0'^01> 

Ro'.2»B - |2^01> 

"  | 0  2  >  

R(HiRa-.o'®B -
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Table 4.B.10. Expansion coefficients of wavefunction for linear and bent 

aliéné in terms of configurations generated from 

quasiatomic FORS MO's 

SAAPS Linear Aliéné Bent Aliéné 

Covalent |cfl2> 
|0'^12> 

|010'2S> 

|010'2T> 

0 . 0  
0 . 0  
0.723744 

0.050349 

0 . 0  
0 . 0  
0.722086 

•0.416897 

C, Cg : 10% 

|0'V> 
|00'1^> 

-0.005680 

0.145391 

0 . 0  

0 . 0  
0 . 0  
0.096605 

C, Cg : I0^2^> 

|0'^2^> 

|00'2^> 

0.145391 

-0.005680 

0 . 0  

0 . 0  
0 . 0  
•0.096605 

Co Cl |0^0'^> 

I0'^0^> 

0.282896 

0 . 0  
0 . 0  
0.256518 

Cq C^ : I1^02> 

|1^0'^> 

0 . 0  
0.344264 

0.277958 

0 . 0  

Cq Cg : I0^0'1> 

|0'^01> 

0 . 0  

0.282896 

0 . 0  

•0.256518 

CQ Cg : |2^01> 

I2^0'1> 

0.344264 

0 . 0  

-0.277958 

0 . 0  

Co^'CiV : 

Co^'c/Cg- : 

10^0 ' 

I1^2^> 

0.102271 

0.154157 

0 . 0  

0 . 0  
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transition states leads to the following comparative inferences. 

The four natural orbitals are similar for the two transition states, 

namely (see Tables 4.B.2 and 4.B.7): 

|a^> - |lp> « |0> is essentially a non-interacting lone orbital on 

the central carbon; 

|lb^> - |10'2b> is a delocalized bonding orbital with positive 

contributions from (1>, |0'> and |2>; 

I2bi> - |10'2c> in the all-T.S. and »|lpc> in the cyc-T.S., is a 

delocalized antibonding orbital with a node between |1> and 

|0'> and another node between |0'> and |2>; 

|a2> - (|1> - |2>)//2 has one node and no contribution from the 

cental carbon. 

The labels a^, b^, ag correspond to the respective Cgy irreps in the aliéné 

transition state. The increase of the CGC angle ^ from 84° to 133.3° has 

the following consequences regarding these molecular orbitals: 

(i) The |a^> orbital loses s-character and its orbital energy increases 

correspondingly ; 

(ii) Since the increase in the distance of the end carbons decreases the 

steric repulsions between the hydrogens, they turn into the plane, 

allowing for greater n-overlap by lining up the orbitals |1>, |0'> 

and |2>. This lowers the orbital energy of |lb^>; 

(iii) The increase in distance between |1> and |2> also lowers the 

antibonding effect between them, thereby lowering the orbital energy 

of |a2>. In the cyc-T.S. |a2> is antibonding, but in the all-T.S. 

|a2> is nonbonding with diradical character. 

Because of these energy changes, the opening from 84° to 133.3° under 
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preservation of Cg symmetry leads to an essential population shift (see 

Tables 4.B.3 and 4.B.8). Since the energy of |a^> increases whereas that 

of |a2> decreases to a nonbonding level, the occupations change from 1.95 

for |a,> and 0.14 for |a2> in the cyc-T.S. to unity for both orbitals in 

the all-T.S., giving it diradical character. 

This occupation shift, in turn, changes the character of the 

I lb^>-110'2b> bonding orbital (see Tables 4.B.3 and 4.B.8). In the cyc-

T.S., its major contributions (0.77 each) are on |1> and |2> with only a 

small contribution to |0'> representing an electron donation of 0.29 

electrons to the center carbon. By contrast, in the all-T.S. the 

occupation of |0'> does not represent an electron donation, because 

|al>«|0> holds only one electron. Consequently, the orbital |0'> 

contributes 0.90 to |10'2b> whereas |1> and |2> contribute only 0.47 each. 

Moreover, because of the occupancy of |a2> with one electron there still 

results a slight charge transfer of 0.01 to the end carbons. This is 

however less than the similar transfer of 0.05 in linear aliéné. 

This population analysis explains the bond order changes shown in 

Tables 4.B.4 and 4.B.9. The bonding effects are essentially between |0'> 

and |1> and between |0'> and |2> since the distance between |1> and |2> is 

large enough so that the (12) bond order probably multiplies a relatively 

small energy integral in both cases. The bond orders (01) and (02) in the 

cyc-T.S. are however lower (0.46 each) than those in the all-T.S. (0.60 

each) because the latter is more delocalized over |0'>-|1>-|2>, as is 

apparent from the populations. This increase in p-type bond order from the 

cyc-T.S. to the all-T.S. parallels the corresponding downhill change in the 

potential energy surface. In both T.S.'s we have one bonding electron pair 
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covering two atom linkages (01 and 02). 

In linear aliéné, by contrast, the lone pair orbital |lp>»|0> has 

expanded to cover also the twisted end orbital |1> while the bonding 

orbital |10'b> has contracted to cover only the end orbital |2> (see Table 

4.B.8). For each of the two linkages there exists therefore a bond, with 

bond order 0.89 (Table 4.B.9). This increase in the total bond order 

accounts for the energy drop to linear aliéné. 

The configurâtional expansion of the bent aliéné wavefunction in 

terms of SAAPs based on quasiatomic orbitals is given in the last column of 

Table 4.B.10. It is readily seen that the neutral base function without 

electron sharing is 

- (/3|010'2S> - |C10'2T>)/2 - |00'12T> , (4.B.10) 

because 

A(|0>|0'>|l>|2>e,) - -A{|0>|1>|0'>|2> Pjje,) 

and 

PgsGl - (-/38o - e,)/2 , 

where 0q, are the singlet and triplet coupled spinfunctions defined in 

Section 4.A.2.3 and Pgg denotes a permutation between spin coordinates. 

Equation (4.B.10) shows again that, in contrast to the ring opening 

transition state, the orbitals |0> and |0'> are here both singly occupied. 

has a weight of 69.5% in the total wavefunction. Electron sharing is 

established by the electron hopping replacements 
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Rl-0' *B " |00'0'2T> - -/3/2 |0' V>  

»g - |0112T> - -/3/2 (1^02> 

$B - |00'10'T> - /3/2 |0'^10> - -/3/2 |0'^01> 

ROM2 *B " |0212T> - /3/2 |2^10> - -/3/2 12^01> 

confirming the delocalized covalent p-bonding between |1>, |0'> and |2>. 

These four terms essentially account for the remaining 30.5% of the 

wavefunction. 

The form of the base function QB is a consequence of the spatial 

symmetry. From Table 4.B.7 it can be inferred that, in terms of the 

symmetry adapted natural orbitals, the dominant SAAP is; 

and it is apparent that this function belongs to the irreducible 

representation Ag. So does therefore the total wavefunction and, hence, 

also (fg. In particular, must therefore satisfy aî'g - -î'g for a being 

the mirror plane perpendicular to the molecule. Substituting for î^g the 

expression (4.B.10), we find 

*0- |(10'2b)^(lp)(12n)> - |(lbl)%a2> (4.B.11) 

p *B - |00'21T> - A ((P'34 00-12) 01 ) (4.B.12) 

where P 3^ is the transposition of the spatial coordinates of electrons 3 

and 4. From Eq. (4.B.12) one deduces 

a -k (00'12 P'348,) - -A {00'12 0, ) 
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*B - - *B 

which is indeed the required relationship. On the other hand, |00'12S> is 

unacceptable because a |00'12S> — + |00'12S>. 

4.3. Symmetry Considerations, Conical Intersection between the two 

Transition States. 

The average ring-opening transition state at 84.25° and the aliéné 

isomerization transition state at 133.3° both have Cg symmetry. Hoever, 

the following reasoning shows that the ground state wavefunctions at the 

two transition states belong to different irreducible representations of 

Cg. From Table 4.B.2 it can be seen that, at the ring-opening transition 

state, the dominant configuration must be one in which the lone pair 

orbital |lp> and the three-center bonding orbital |10'2b> are both doubly 

occupied. Since both have A' symmetry in Cg, the dominant configuration 

and, hence, the wave function itself belong to the irreducible 

representation A' at this geometry. On the other hand, Table 4.B.7 shows 

that, at the aliéné isomerization transition state (bent aliéné), the 

dominant configuration is one in which the three-center bonding orbital 

|10'2b> is doubly occupied whereas the lone pair orbital |lp> and the non-

bonding orbital |12n> between C^ and Cg are both singly occupied. Since 

these three orbitals belong to the irreducible representations A', A' and 

A" respectively, the dominant configuration and, hence, the entire 

wavefunction belong to the irreducible representation A" in Cg at this 

geometry. 

From this change in irreducible representations, it can be inferred 
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that, on a path leading from one of these transition states to the other 

under preservation of C, symmetry, there exist two states, of A' and A" 

symmetry respectively, which cross somewhere between <t> •» 85° and (A -

133.3° Within the context of the full potential energy surface, this 

implies the existence of two surfaces which exhibit a conical intersection. 

The implications of this feature are discussed in detail in Section 4.A.5. 

5. The free internal cogwheel motion 

It stands to reason that, for values of ̂  which are not much smaller 

than 180° motions along lines ^i+^g^constant have a similar meaning as 

they do for aliéné, i.e. they represent approximate rigid rotations around 

an axis which goes approximately through the three carbon atoms and it is 

for this reason that such motions are approximately free. Such an 

interpretation breaks down however when ̂  becomes sufficiently small. 

Indeed, as Valtazanos et al. (1990) suggest, for 0-140° (Figure 14 of this 

reference) it is seen that a free motion exists only along the valleys 

6^+62~90t but not anymore along the ridges The free motion along 

the valleys persists for ( f> values all the way back almost to the transition 

state (see Figures 9 to 15 by Valtazanos et al., 1990). These motions 

along the valleys correspond to cogwheel-like synchronized disrotatory 

rotations of the two CHg groups with a phase lag of 90? This result could 

not have been foreseen without an explicit ab-initio calculation of the 

entire surface. 

How can this isoenergetic shelf be explained? In order to answer 

this question we resort again to an analysis in terms of localized FORS 
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MOs. We consider three geometries along the valley floor on the panel for 

^-100° (Figure 4.A.8 of Section 4.A.6), namely ,0), (45° 

,45) and (0° ,90). 

5.1. Quasiatomic FORS MO's 

Xilalg) - (90: 01 

For the geometry (g^-90° ) the right CHj group lies in the CGC 

plane and the left CHg group stands perpendicular to it, as illustrated in 

Figure 4.B.3A. The molecule has Cg symmetry with respect to the CGC plane 

and there are two reaction orbitals of A' symmetry and two of A" symmetry. 

Localization of the former yields the in-plane orbitals |0> on atom Gq and 

|1> on atom . Localization of the latter yields the perpendicular 

orbitals 12> on atom Gj and |0'> on atom Gq (see Figure 4.B.1). The unit 

vectors of the directions in which these four quasi-atomic FORS MO's point 

are indicated in Figure 4.B.3A. Gontours of the two quasi-atomic FORS MO's 

of A" symmetry are exhibited in Figure 4.B.4A; they are drawn in the plane 

perpendicular to the GGG plane and containing the atoms Gq and Gj. The 

bold contours depict orbital |0'>, the weaker contours represent orbital 

|2>. It is apparent that these two quasiatomic FORS MO's correspond to two 

p-orbitals on atoms Gq and Cg whose overlap is sufficient for the formation 

of a TT-bond. Gontours of the quasiatomic FORS MO's of A' symmetry are 

exhibited in Figure 4.B.4B. They are drawn in the GGG plane, the bold 

contours corresponding to |0> and the lighter contours corresponding to 

|1>. The overlap between these two orbitals is noticeably weaker so that 

they are in a less favorable position for rr-bonding. (Note that the 

meaning of solid and dashed contours is different in Figures 4.B.4A and B). 
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A (90°, 0°) 

I0'> 
8(45% 45°) 

Iî> |0'> 

IO> |2> 

Figure 4.B.3. Positions of atoms and directions of quasiatomic reactive 

FORS MO's in the valley 5,+52-90° for $-100? Direction of 

reactive orbitals indicated by arrows representing unit 

vectors. Dotted lines imply objects behind or below the CCC 

or CHH planes. Numbers next to A, B, C indicate (5^, 

In Figure 4C, the labels |0'>, |1> indicate that these 

orbitals point in directions opposite to those of the arrows 
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^1 " ̂2 " 451.) 

The intermediate geometry which has Cg symmetry is shown 

in Figure 4.B.3B. Here the localization was performed simultaneously on 

all four reaction orbitals. The quasiatomic FORS MO's on the central atom 

are chosen as two equivalent hybrid-type orbitals rather than a and tt. 

Nonetheless we still denote them as |0> and |0'>. The directions of the 

quasi-atomic FORS MOs are again indicated by unit vectors in Figure 4.B.3B. 

The geometry of Figure 4.B.4B can be imagined to result from that of Figure 

4.B.4A as follows: The right-hand CHj group rotates in such a manner that 

orbital 12> tilts towards the viewer and the CHg group on the left rotates 

so that orbital |1> tilts its head below the CGC plane. Simultaneously, 

the orbitals |0> and |0'> on the central carbon rigidly rotate together in 

such a manner that |0'> tilts towards the viewer and |0> tilts below the 

CGC plane. A remarkable result is that the two unit vectors marking the 

directions of 12> and (0'> as well as the bond vector CqCj almost lie in 

one plane. In fact the plane spanned by |2> and GjGq forms an angle of 2° 

with the plane spanned by |0'> and C^Gg. We therefore choose the plane 

halfway in between these two planes for drawing the contours of the 

quasi-atomic FORS MO's |0'> and |2>. They are shown in Figure 4.B.5A. The 

situation is entirely analogous for the orbitals ( 1> and (0>. The contours 

for these orbitals are shown in Figure 4.B.5B. It is apparent that both 

orbital pairs exhibit a sizable overlap so that bonding interactions can 

develop between the partners of each pair. As before, the orbitals |0> and 

|0'> are given by bold contours. 
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1 n I r 

I0'> I2> 

I I I I I 

I0> 

_/ 

Figure 4.B.4. Quasiatomic reactive FORS MOs for $-100° and 

(5^, 62)~(90tO°). A: Drawing plane perpendicular to CCC 

plane, solid lines - positive, dashed lines - negative. 

B; Drawing plane in CCC plane, dashed lines - positive, 

solid lines - negative 
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Figure A.B.5. Quasiatomic reactive FORS MOs for $=100° and 

(^11 ^ • For explanation of drawing planes see 

text. Solid lines - positive, dashed lines - negative 
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901 ) 

The positions of the atoms for the geometry (5^-0° gg-SO) are shown 

in Figure 4.B.3C. The directions of the quasiatomic FORS MO's are again 

indicated by unit vectors. The geometry of Figure 4.B.AC can be imagined 

to result from that of Figure 4.B.4B by continuing the rotations which led 

from 4.B.4A to 4.B.4B. Thereby orbitals (2> and |0'> should end up lying 

in the CGC plane whereas orbitals |1> and |0'> should end up perpendicular 

to the CGC plane pointing below that plane. In Figure 4.B.4G, we have 

however exchanged the labelling for the orbitals |0>, |0'> so that as was 

the case for (6^-90° i 10> denotes again the in-plane orbital and 

|0'> denotes again the perpendicular orbital. Hence |0> of Figure 4.B.4B 

rotates into |0'> of Figure 4.B.4C and |0'> of Figure 4.B.4B rotates into 

|0> of Figure 4.B.4C. (Note also that the arrows drawn correspond to the 

orbitals -|1> and -|0'>, pointing upward, and are therefore labelled as 

|1>--|1> and |0>--|0'>). It is apparent that the roles of the orbitals |1> 

and I2> are now reversed in that the arrangement is favorable for a n-bond 

between |1> and |0'>, perpendicular to the CGC plane, while a weaker n-bond 

will be formed between |2> and |0> in the CGC plane. 

5.2. Analysis for (fii,52)-(90° 0° ) and (5i,62)-(0° 90° ) 

Population and Bond-order Analvsis 

The density matrices in terms of these quasi-atomic orbitals are 

given in Table 4.B.11A and G. The occupation numbers of all four orbitals 

|0>, |0'>, |1>, |2> are close to one. In the case (5^,52)~(90t0'') of 

Table 4.B.11A, positive bond orders exist for the orbital pair |0>, |1> and 

for the orbital pair |0'>, |2>. The fact that bonding can occur in both of 
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Table 4.B.11. Occupation numbers and bond orders of quasi-atomic orbltals 

along the isoenergetic valley for #-100° 

A. Density matrix coefficients Pjj for (5^,52)-(90°0°) 

|0> |0'> |1> |2> 

|0> 1.06711 0 0,68621 0 

|0'> 0 0.96612 0 0.84087 

ll> 0.68621 0 0.93259 0 

|2> 0 0.84087 0 1.03421 

B. Density matrix coefficients pjj for (5^,52)~(^5°45°) 

|0> |0'> |1> |2> 

|0> 1 02020 0.11118 0.74928 -0 03815 

|0'> 0 11118 1.02020 -0.03815 0 74928 

|1> 0 74928 -0.03815 0.97981 -0 07665 

|2> -0 03815 0.74928 -0.07665 0 97981 

C. Density matrix coefficients Pjj for (6i,62)-(0°90°) 

|0> |0'> |1> |2> 

|0> 1.06711 0 0 0.68621 

|0'> 0 0.96612 0.84087 0 

|1> 0 0.84087 1.03421 0 

|2> 0.68621 0 0 0.93259 
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these pairs accounts for almost an entire electron having been promoted 

from the a orbital |0> to the tt orbital |0'> at the central carbon. It is 

however apparent, that the electron attraction power of |0> is still larger 

than that of |0'> because, taking a unit occupation of all four orbitals as 

reference, a charge of 0.068 electrons has moved from |1> to |0> whereas a 

charge of 0.034 has moved in the opposite direction, viz. from |0'> to |2>. 

In total, a charge in the amount of 0.034 electron has been transferred to 

the central carbon. The bond |0>-|1> has a considerably weaker bond order 

than the bond |0'>-|2>, as we expected from the overlaps inferred from 

Figure 4.B.4. The roles of the orbitals |1> and |2> are manifestly 

reversed in the density matrix for the geometry (6i,&2)-(0°90°) shown in 

Figure 4.B.3C. 

The expansions of the natural FORS MO's in terms of the quasiatomic 

FORS MO's are listed in Table 4.B.12A for (5^,52)-(90t0° ) and illuminate 

the foregoing conclusions from a somewhat different angle. It is apparent 

that there exists one bonding MO |01b> between the quasi-atomic orbitals 

I0> and |1> (first column) and another another bonding MO |0'2b> between 

the quasi-atomic orbitals (0'> and (2> (third column). To each of them 

there exists a correlating orbital (columns two and four) and each 

correlated bond embodies exactly two electrons. In agreement with the 

preceding charge transfer observation, the bond involving |0> is polarized 

towards Cq whereas the bond involving |0'> is polarized away from Cg 

towards Cg. Furthermore the relative occupations of the bonding and 

antibonding orbitals imply that the in-plane bond involving |0> is weaker 

than the out-of-plane bond involving |0'>. Table 4.B.12C shows the 

analogous results for (5^, 62)~(0Î90°) with the roles of 11> and |2> 
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Table 4.B.12. Natural and chemically localized FORS MO's for 0-100° 

A. fii-90: gg-O" ; 

|01b> |01c> |0'2b> |0'2c> 

|0> 0.740793 -0.671733 0 0 

|0'> 0 0 0.692656 0.721268 

ll> 0.671733 0.740793 0 0 

|2> 0 0 0.721268 -0.692656 

Nn 

Sum 

1.689348 0.310352 

1.99970 

1.841724 0.158606 

2.00033 

B. 6^-52-45° Natural MO's: 

|A-bond> )A-corr> |B-bond> jB-corr> 

|0> 0.538153 -0.458684 -0.476127 0.522784 

|0'> 0.538153 -0.458684 0.476127 -0.522784 

|1> 0.458684 0.538153 -0.522784 -0.476127 

|2> 0.458684 0.538153 0.522784 0.476127 

Nn 

Sum 

1.737490 0.297050 

2.03454 

1.773617 0.191863 

1.965480 
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Table 4.B.12. (continued) 

B'. Chemically localized MO's: 

|01b> |01c> |0'2b> |0'2c> 

|0> 

|0'> 

ll> 

|2> 

0.717204 -0.694003 

0.043859 0.045326 

0.694003 0.717204 

-0.045326 0.043859 

0,043859 0.045326 

0.717204 -0.694003 

-0.045326 0.043859 

0.694003 0.717204 

Nn 

Sum 

1.755554 0.244457 

2.000011 

1.755554 0.244457 

2.000011 

gy-O; 02-90° :  

|02b> |02c> |0'lb> |0'lc> 

|0> 

|0'> 

|1> 

|2> 

0.740793 -0.671733 

0 0 

0 0 

0.671733 0.740793 

0 0 

0.692656 0.721268 

0.721268 -0.692656 

0 0 

Nn 

Sum 

1.689348 0.310352 

1.99970 

1.841724 0.158606 

2.00033 
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N a t u r a l  F O R S  M  0  '  s  

A.(90:0°) |01b> |01c> |0'2b> |0'2c> Pîî Atoms 

Quasi-

atomic 

FORS 

MO's 

10> 
|0'> 

ll> 

12> 

0.92707 0.14004 

0 0 

0.76228 0.17031 
0 0 

0 0 

0.88361 0.08251 

0 0 
0.95812 0.07609 

1.06711 
0.96612 
0.93259 
1.03421 

2.03323 

1.96680 

Nn 
Sum 

1.68935 0.31035 

1.99970 
1.84172 0.15861 

2.00033 4 4 

N a t u r a l  F O R S  M  0  '  s  

B.(45:45°) |A-bond> |A-corr> |B-bond> |B-corr> Pîî Atoms 

Quasi-

atomic 

FORS 

MO's 

10> 
|0'> 
|1> 

\2>  

0.50319 0.06250 

0.50319 0.06250 

0.36555 0.08603 
0.36555 0.08603 

0.40207 0.05244 

0.40207 0.05244 
0.48474 0.04349 

0.48474 0.04349 

1.02020 

1.02020 

0.97981 

0.97981 

2.04040 

1.95962 

Nn 
Sum 

1.73749 0.29705 

2.03454 

1.77362 0.19186 

1.96548 4 4 
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C h e m i c a l l y  l o c a l i z e d  F O R S  M  G  '  s  

B'.(45:45°) |01b> |01c> |0'2b> |0'2c> |b>|b'> |c>|c'> Pi; Atoms 

Quasi-

atomic 

FORS 

MO's 

|0> 

|0'> 

11> 
|2> 

0.90303 0.11774 0.00338 0.00050 -0.00059 -0.00165 

0.00338 0.00050 0.90303 0.11774 -0.00059 -0.00165 

0.84555 0.12574 0.00361 0.00047 0.00059 0.00165 

0.00361 0.00047 0.84555 0.12574 0.00059 0.00165 

1.02241 

1.02241 

0.97761 

0.97761 

2.04481 

0.97761 

0.97761 

Nn 
Sum 

1.75555 0.24446 1.75555 0.24446 0 0 
2.00001 2.00001 4 4 

N a t u r a l  F O R S  M  0  '  s  

C.(0:90°) |02b> |02c> |0'lb> |0'lc> Pîi Atoms 

Quasi- |0> 0.92707 0.14004 0 0 1.06711 2.03323 
atomic |0'> 0 0 0.88361 0.08251 0.96612 
FORS |1> 0 0 0.95812 0.07609 1.03421 1.96680 
MO's |2> 0.76228 0.17031 0 0 0.93259 

Nn 1.68935 0.31035 1.84172 0.15861 

Sum 1.99970 2.00033 4 4 
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Table 4.B.14. FORS Bond Order Analysis for ^—100° 

N a t u r a l  F O R S  M  0  '  s  

A. (90:0°) 101b> 1 OlO |0'2b> |0'2c> Piî 

Quasi-

atomic 

FORS 

MO 
pairs 

(00') 

(01) 

(02) 

(O'I) 
(0'2) 
(12) 

0 0 

0.84065 -0.15444 

0 0 

0 0 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
0.92011 -0.07924 

0 0 

0 

0.68621 

0 

0 
0.84087 

0 

N a t u r a l  F O R S  M  0  '  s  

B. (45:45°) |A-bond> |A-corr> |B-bond> |B-corr> Pu 

Quasi-
atomic 

FORS 
MO 

pairs 

(00') 
(01) 
(02) 
(O'I) 

(0'2) 

(12) 

0.50319 0.06250 

0.42889 -0.07332 

0.42889 -0.07332 
0.42889 -0.07332 

0.42889 -0.07332 
0.36555 0.08603 

-0.40207 -0.05244 

0.44147 -0.04776 

-0.44147 0.04776 

-0.44147 0.04776 

0.44147 -0.04776 
-0.48474 -0.04349 

0.11118 

0.74928 
-0.03814 
-0.03814 

0.74928 

-0.07665 
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Table 4.B.14. (continued) 

C h e m  i c a 1 1 y localized F O R S  M 0 ' s 

B'.(45:45°) 01b> |01c> |0'2b> |0'2c> |b>|b'> 1c>1c'> Pii 

Quasi- (00') 0 05522 -0.00769 0. 05522 -0.00769 -0.00960 0.02544 0.11090 

atomic (01) 0 87381 -0.12168 -0. 00349 0.00049 0.00004 0.00011 0.74928 

FORS (02) -0 05707 -0.00744 0. 05344 0.00795 -0.00922 -0.02607 -0.03841 

MO (O'I) 0 05344 0.00795 -0. 05707 -0.00744 -0.00922 -0.02607 -0.03841 

pairs (0'2) -0 .00349 0.00049 0. 87381 -0.12168 0.00004 0.00011 0.74928 

(12) -0 .05522 0.00077 -0 05522 0.00769 -0.00900 0.02715 -0.08383 

N a t  u r a 1 F O R S  M 0 ' s 

C. (0:90°) |02b> |02c> |0'lb> |0'lc> Piî 

Quasi- (00') 0 0 0 0 0 
atomic (01) 0 0 0 0 0 
FORS (02) 0.84065 -0.15444 0 0 0.68621 
MO (O'I) 0 0 0.92011 -0.07924 0.84087 

pairs (0'2) 0 0 0 0 0 
(12) 0 0 0 0 0 
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Table 4.B.15. Expansion coefficients of wavefunctions for three species in 

the isoenergetic valley for ^-100° in terms of 

configurations generated from quasiatomic FORS MOs 

saaps 90:0' 0:90° 45:45* 

P 0 0 Cq C, Gg I0^12> 

|0'^12> 

|00'12S> 

100'12T> 

-0.006216 

0.002979 

•0,286549 

0.752690 

0,006216 

-0.002979 

•0,286549 

•0.752690 

-0.073841 

-0.073841 

-0.327543 

0.745284 

Ci Cg I0^1^> 

[0 'h^> 

|00'1^> 

-0,005821 

0.080091 

•0.003956 

0.152381 

-0.014741 

-0.003289 

-0.010228 

0.105977 

0.021182 

C, Cj : i 
\o 'h^> 

100'2^> 

0.152381 

-0.014741 

0,003289 

-0.005821 

0.080091 

0.003956 

0.105977 

-0.010228 

0.021182 

co c, |cf0'2> 

(0 '^02> 

0.279601 

•0.001292 

-0.004490 

0,299058 

0,284827 

-0,008997 

CoCi : |021^> 

|0'21^> 

0.001785 

0.177873 

0.332512 

0.002625 

0.064810 

0.246137 

Cq Cg : |cfo'i> 
|0'^01> 

0.004490 

0.299058 

0,279601 

0,001292 

-0,008997 

0,284827 

cQ cg : |012> 

|0'12^> 

0.332512 

-0.002625 

-0,001785 

0,177873 

0,246137 

0,064810 

Co^'c/Cg" : 

Co^'c/Cg" : 

|0^0'^> 

11^2^> 

0,087876 

0,061851 

0,087876 

0,061851 

0,085405 

0,059333 
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reversed. 

The Integrated and compacted representation in form of the 

population and bond order analysis, given in Tables 4.B.13A, 13C, 14A and 

14C confirms these conclusions. 

Configuratlonal Analysis 

Table 4.B.15 lists the expansion coefficients of the FORS 

wavefunctions in terms of the configurations formed from quasiatomic FORS 

MO's for the geometries under discussion. The first column applies to the 

case (Sj ,S2)-(90°0°). Here the normalized neutral base function without 

electron sharing is 

$g- 0.934|00'12T> - 0.355|00'12S> 

and it has a weight of 65% in the total wavefunction. This expression for 

(Pg shows that for a CCC opening angle of 100° the orbitals |0> and |0'> on 

the central carbon are energetically competitive. 

As mentioned before, the predominance of the triplet coupled term 

(T) over the singlet coupled term (S) is presumably due to an approximate 

"local Hund's rule". As emphasised above, this base function yields no 

covalent bonding, in the present case no n-bonding between Cg and or Cg. 

Such bonding is the result of electron sharing resulting from the admixture 

of SAAPs providing for the appropriate electron jumps. Indeed the SAAPs 

with the larger coefficients in the first column of Table 4.B.15 provide 

just the right terms; 

For electron sharing between |0'> and |2>; 



www.manaraa.com

182 

Ro..2»B - |2^01>. - |0'^01>, 

and for electron sharing between |0> and |1>; 

Ro.l*8 - |1^0'2>. - |0^0'2>. 

All other SAAPs contribute very little, except for (0^2^> which can be 

understood as Ri^o^'-»2*B' Prom the magnitude of the coefficients, it is 

also seen that, in accordance with our expectations, the interaction 

between |0'> and |2> is stronger than that between |0> and |1>. 

The case (5^, shown in the second column. It is 

apparent that this column of coefficients can be obtained from the first 

column by (i) changing the sign of |0'> and |2>, (ii) interchanging |1> and 

|2>, (iii) taking into account that |00'21T> - -|00'12T>. 

5.3. Analysis for 6^-82-^^° 

Population and Bond Order Analysis 

The density matrix for this case is listed in Table 4.B.11B. It is 

apparent that there exists perfect symmetry with respect to the end 

carbons. Orbital |0> has a bonding interaction with orbital |1> and a 

slight non-bonded repulsion with respect to orbital |2>. Conversely 

orbital |0'> has a bonding interaction with orbital (2> and a slight 

non-bonded repulsion with respect to orbital |1>. An electronic charge in 

the amount of 0.020 electrons is transferred from orbital |1> to orbital 

|0> and equally from orbital |2> to orbital |0'>, giving the central carbon 

an extra electronic charge of 0.040 quite similar to the total charge 
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transfer of 0.034 to the central carbon for the cases and 

(0°90°). It is also noteworthy that the two identical bond orders in this 

case, viz. 0.75, are approximately equal to the average of the two 

different bond orders for the previously considered case (f^-90° fig"®" )• 

(0.8407 + 0.6854)/2 « (0.8407 K 0.6854)^''^ « 0.76. 

This similarity fits in well with the near iso-energeticity of the three 

geometries. 

Since the molecule has Cg symmetry in this conformation, the natural 

orbitals have A and B symmetry. Their expansion in terms of the 

quasiatomic orbitals, displayed in Table 4.B.12C, shows that, because of 

the symmetry adaption, they mix up the two bonds. Greater clarity is 

therefore obtained by going over to the chemically localized FORS MO's 

discussed as the end of Section 4.3.2.2. In the present case, the separate 

localizations of the strongly and the weakly occupied natural orbitals 

|A-bond> and |B-bond> is readily accomplished by inspection, viz., 

|01b> - I |A-bond> - |B-bond> ) / /2, 

|01c> - I |A-corr> - |B-corr> ) / /2, 

)0'2b> - { |A-bond> + |B-bond> ) / /2, 

|0'2c> - I |A-corr> + |B-corr> ) / /2, 

From their expansions in terms of the quasiatomic orbitals, listed in Table 

4.B.12B', it is apparent that the first two describe bonding and 

correlation between |0> and |1> whereas the last two do so between |0'> and 
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Table 4.B.16. Density matrix in terms of chemically adapted orbitals for 

^—100° and 

(01b> |01c> |0'2b> |0'2c> 

|01b> 1.75555 0 -0.01860 0 

|01c> 0 0.24446 0 0.05259 

|0'2b> -0.01860 0 1.75555 0 

|0'2c> 0 0.05259 0 0.24446 
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|2>. The density matrix between these orbitals, given by Table 4.B.16, 

shows that they are still near-natural. Tables 4.B.13B' and 4.B.14B' 

display the population and bond order analysis In terms of these chemically 

adapted orbitals. Since they are not exactly natural orbitals, small 

crossterms must be listed for them. These tables confirm our conclusions 

regarding populations and bonding. 

Confipurational Analysis 

These conclusions are also reflected in the expansion coefficients 

for the wavefunction which are listed in the last column of Table 4.B.15. 

In this case the neutral base function without electron sharing is 

$g- 0.915|00'12T> - 0.402|00'12S> 

and it represents 66% of the wavefunction. It is readily seen that the 

remaining major contributors to this wavefunction are SAAPs which establish 

electron sharing between the orbitals |0> and |2> and between the orbitals 

|0'> and |1>, namely 

- |1^0'2>, Ri.o»B - |0^0'2> 

Ro..2»B - I2^01>. R2-0'*B - |0'^01> 

and to a lesser extent 

R2.o.R(M*B - lO'^l^. 
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It is apparent that the CI expansions of all three columns are very 

similar. 

In summary, we infer that the binding energy generated by each of 

the twisted n-bonds in the (45°45°) geometry is about the average of the 

binding energies of the two different w-bonds found for the (0°90°) and 

the (90°0°) geometries and that this accounts for the isoenergetic shelf 

which corresponds to the free synchronized CHg rotations. 

6. Population and Configuration Analysis 

for the Extended Basis Set Calculations 

The analyses in Sections 4.B.3 through 4.B.5 were based on the 

calculations performed with the ST0-3G basis set. Since they were carried 

out with a minimal basis set, the question arises whether the 

interpretability in terms of atomic building blocks is a consequence of 

this restriction. In order to show that the atomic interpretability is in 

fact basis-set independent, we present in this section analogous analyses 

of calculations made with considerably higher accuracy. While we maintain 

th 20 dimensional FORS space spanned by four reactive orbitals, we expand 

the molecular orbitals in terms of an extended contracted basis with 

polarization functions, viz., the Dunning-Hay basis (9s5pld/3s2pld) for 

carbon and (4s/2s) for hydrogen. The details of these calculations and of 

the consequences for the energy surface are already discussed in Section 

4.A.3. Here we report the results of the analyses for the reactant 

cyclopropylidene, the product aliéné, the ring opening transition state and 

the aliéné isomerization transition state. 
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6.1. Quasi-atomic Character of Localized MO's 

The first question is whether it is possible to localize the four 

FORS molecular orbitals, obtained from the extended basis set calculations, 

sufficiently strongly so that they still have quasiatomic character. 

Rather than drawing more contour plots of localized molecular orbitals, we 

examine here a more quantitative measure of their atomic character, namely: 

the projection of each of these orbitals on the basis of the optimal five 

free-atom orbitals Is, 2s, 2p^, 2py and 2p^ of the atom on which the 

quasiatomic MO is allegedly concentrated. If the orthonormal orbitals of 

that free atom are denoted by i Xg, X31 Xt,> X5. then the projection of a 

quasiatomic molecular orbital (f> is given by 

projet  ) -
j-1 

The optimal free-atom orbitals of the carbon atom were determined by 

a two-configuration MCSCF calculation of the ^P(m^-0, fflg-l) groundstate 

wavefunction 

c^ A{ ls^2s^2p^2py ) + Cg A{ls^2pj^2p^2pj) 

in the same contracted basis of the carbon atom which formed part of the 

basis for the molecular calculations (i.e. 9s5pld/3s2pld). 

Table 4.B.17 lists the projections of each of the four quasiatomic 

molecular orbitals on the respective carbon free-atom basis at the four 
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Table 4.B.17. Projection of Quasiatoraic FORS MO's onto their Respective 

Free-Atom Bases (Extended plus polarization basis 

calculation 

Critical point |0> on Cq |0'> on Cq |1> on | 2> on 

Cyclopropy1idene 

Ring Opening 

Transition State 

Aliéné 

Aliéné isomeri-

zation TS 

0.9876 0.9590 

0.9777 0.9585 

0.9534 0.9534 

0.9327 0.9780 

0.9466 0.9466 

0.9666 0.9666 

0.9855 0.9855 

0.9850 0.9850 
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critical points of the energy surface. All of them lie between 0.93 and 

0.99. It is clearly possible to find a transformation among the FORS 

molecular orbital such that all resulting molecular orbitals have strong 

quasiatomic character. In view of this result, it stands to reason that 

maximizing these projections would yield very similar orbitals. 

It may be noted that the quasiatomic molecular orbitals are mutually 

orthogonal. It is obviously possible to determine non-orthogonal molecular 

orbitals with even greater atomic projections while still spanning the same 

space of FORS MO's. 

6,2, Population Analysis 

The population analysis is entirely determined by the population-

bond-order matrices between the quasiatomic orbitals characterized by the 

projections of Table 4,B,17, These density matrices are listed in Table 

4,B.18, They should be compared to the analogous matrices listed in Tables 

4,B,1 and 4.B.6, as indicated in Table 4.B.18. It is evident that the 

results for the accurate calculation are very similar to those for the 

minimal-basis-set calculations. The quantitative differences are extremely 

small. 

Alternatively, one can compare the spectral representations of these 

matrices, i,e,, the natural orbitals and their occupation numbers. They 

are listed in Table 4.B,19 which corresponds to Tables 4,B,2 and 4,B,7, 

This comparison reconfirms the conclusion that the analyses of the minimal-

basis-set calculations and of the more accurate calculations lead to 

essentially identical results. 
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Table 4.B.18. Population-Bond-Order Matrices For Extended-plus-

Polarization Basis Calculations 

Cyclopropylidene (compare Table 4.B.1A) 

|0> [0^> []> |2> 

|0> 1.92959 0 -0.00311 -0.00311 
|0'> 0 0.07041 0 0.97649 
|1> -0.00311 0 1.00001 0.97649 
|2> -0.00311 0 0.97649 1.00001 

Ring Opening Transition State (compare Table 4.B.1B) 

|0> |0^ |1> |2> 

|0> 
|0'> 
|1> 
| 2>  

1.96027 
0 

-0.00334 
-0.00334 

0 
0.26250 
0.42708 
0.42708 

•0,00334 
0.42708 
0.88862 
0.80832 

-0.00334 
0.42708 
0.80832 
0.88862 

Aliéné (compare Table 4.B.6A) 

|0> |0'> |1> | 2>  

|0> 
|0'> 
|1> 
| 2>  

0.95372 
0 

0.91900 
0 

0 
0.95372 

0 
0.91900 

0.91900 
0 

1.04628 
0 

0 
0.91900 

0 
1.04628 

Aliéné Isomerization Transition State (compare Table 4.B.6B) 

|0> |0'> |1> |2> 

|0> 1 0 0 0 
|0'> 0 0.98321 0 62642 0 62642 
ll> 0 0,62642 1 00840 0 00840 
|2> 0 0.62642 0 00840 1 00840 
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Table 4.B.19. Natural Orbltals and Occupation Numbers for Extended-plus-

Polarization Basis Calculations 

Cyclopropylidene (compare to Table 4.B.2A) 

1 lp> 1 IpO 112b> 112c> 

|0> 0.99572 0 -0.09245 0 

|0'> 0 1 0.70408 0 

ll> 0.06537 0 0.70408 0.70711 

|2> 0.06537 0 0.70408 -0.70711 

Np 

Sum 

1.92918 0.07041 

1.99959 

1.97690 0.02352 

2.00042 

Ring Opening Transition State (compare to Table 4.B.2B) 

|lp> |lpc> |10'2b> |10'2c> 

|0> 0.99480 -0 .00084 0.10182 0 

|0'> 0.03412 0 .93939 0.34115 0 

|1> -0.06784 -0 .24243 0.66078 0.70711 

|2> -0,06784 -0 .24243 0.66078 0.70711 

Nn 1.96073 0 04206 1.91692 0.08030 

Sum 2.00279 1.99721 
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Table 4.B.19. (continued) 

Aliéné (compare to Table 4.B.7A) 

101b> 1 OlO |0'2b> |0'2c> 

|0> 0.68910 0.72467 0 0 

|0'> 0 0 0.68910 0.72467 

|1> 0.72467 -0.68910 0 0 

|2> 0 0 0.72467 -0.68910 

Nn 

Sum 

1.92026 0.07984 

2.00000 

1.92016 0.07984 

2.00000 

Aliéné Isomerization Transition State (compare to Table 4.B.7B) 

1lp> 112n> |10'2b> |10'2c> 

|0> 1 0 0 0 

|0'> 0 0 0.70037 0.71378 

ll> 0 0.70711 0.50472 -0.49524 

|2> 0 -0.70711 0.50472 -0.49524 

Nn 

Sum 

1.00000 1.00000 

2.00000 

1.88605 0.11395 

2.00000 
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6.3. Configurational Analysis 

The expansions of the FORS wavefunctions in terms of the 

configurations generated by the quasiatoraic FORS MO's are listed in Table 

4.B.20. The analogous expansions for the minimal basis set calculations 

were given in Tables 4.B.5 and 4.B.10. As expected (in view of the 

population analysis), the simpler and the more accurate calculations also 

agree closely in the CI coefficients of the wavefunctions, so that all 

inferences reached in the earlier sections regarding the interpretation of 

the wavefunctions and the energy changes remain valid. 

The quantitative results of Tables 4.B.17 to 4.B.20 show that the 

analysis in terms of quasiatoraic orbitals is independent of the working 

orbital basis. We feel therefore justified to conclude that, in fact, it 

is independent of how the orbitals are expressed. 

7. Summary and Conclusions 

FORS wavefunctions (which are unambigously defined) yield molecule-

intrinsic FORS MO's among which arbitrary non-singular transformations are 

permissible. This freedom can be used to localize these molecular 

orbitals. 

The maximally localized FORS MO's are thus basis-set-independent, 

intrinsic orbitals of such wavefunctions. 

These maximmaly localized FORS MO's have the character of slightly 

deformed free-atom SCF or MCSCF orbitals, i.e., they are quasiatomic MO's. 

They form an effective basis for rigorously and unambigously achieving the 

objective of Mulliken's population analysis. The expansion coefficients in 
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Table 4.B.20. Expansion coefficients for FORS wavefunctions determined 

with the Extended-plus-polarization Basis in terms of 

configurations generated from Quasiatomic FORS MO's 

SAAPS Cyclopropylidene Ring Opening 

Reactant* Trans. State 

Aliéné 

Product^ 

Aliéné Iso-

merization T.S.' 

|cfl2> 

|0'^12> 

|00'12S> 

100'12T> 

0.765408 

•0.145899 

0 

0 

0.740695 

•0.120286 

0.006387 

0 

0 
0 

0.691221 

0.038554 

0 

0 
0.698631 

•0.403355 

|0^1^> 

|0'^1^> 

i00'l^> 

0.435218 

•0.083085 

0 

0.327408 

•0.050827 

0.004634 

-0.005663 

0.163483 

0 

0 

0 

0.114835 

|0V> 

10'^2^> 

100-2^ 

0.435218 

•0.083085 

0 

0.327408 

-0.050827 

0.004634 

0.163483 

•0.005663 

0 

0 
0 

•0.114835 

|ofo'2> 

|0'^02> 0.007356 

0.324581 

•0.002941 

0.299135 

0 

0 

0.276610 

|02r> 

10'21^> 

0.007614 

0 

0.012779 

0.002704 0.350872 

0.291393 

0 

|ofo'i> 

|0'^01> 0.007356 

0.324581 

•0.002941 

0 

0 

0 
0 

|012^> 

|0'12^> 

10^0 ' 2> 

0.007614 

0 

•0.001141 

0.012779 

0.002704 

0.078708 

0.350872 

0 

0.121189 

-0.291393 

0 

I1^2^> -0.001141 -0.000890 0.165338 

Compare to Table 4.B.5 : Compare to Table 4.B.10 
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terms of configurations generated by the quasiatomic MO's can be related to 

chemical bonding. Energy changes along paths on the potential energy 

surfaces governing the discussed reactions can be elucidated through 

analyses in terms of the quasiatomic FORS MO's. The conclusions obtained 

by such analyses are basis-set independent. In many cases, the analyses of 

minimal-basis-set calculations will be very similar to those of the 

corresponding extended basis set calculations. The essential difference 

between the two approximations is the difference in magnitude of the 

projection of the quasiatomic FORS MO's on the space of the free atom MCSCF 

orbitals. This projection is very large (above 90% in our case) for both 

types of calculations. For the intrinsic quasiatomic FORS MO's (which are 

better approximated by the extended basis calculations) the projections are 

however somewhat smaller than for the minimal-basis calculations. While 

these orbital adjustments of the intrinsic quasiatomic MO's are essential 

for insuring the chemical usefulness of the predicted energy changes, they 

do not significantly diminish the quasi-atomic character. It can therefore 

be concluded that very good molecular wavefunctions can usually be formed 

by superimposing configurations generated from orthogonal molecular 

orbitals which differ from the MCSCF orbitals of free atoms only by small 

deformations. 

In the reported sequence of investigations, insight in the 

cyclopropylidene-aliéné ring-opening has been gained on the basis of the 

potential energy surface governing this reaction. 

The global overall features of this surface as well as the specific 

topographies of its key regions have been established. The changes in 

molecular geometry along the reaction paths and the critical energy 
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differences have been related to the electronic rearrangements through a 

bonding analysis in terms of intrinsic quasiatomic molecular orbitals. 

In order to be able to deal with an energy surface of such an 

extent, the appropriate formulation and separation of primary and secondary 

internal coordinates is essential. The surface turned out to exhibit a 

variety of nontrivial features requiring specific analyses; a bifurcation 

near a transition state, a valley-ridge inflection point as well as a 

conical intersection on the steepest descent path, and an isoenergetic 

shelf corresponding to a synchronized free internal motion. 

We believe that such a richiness of features is not peculiar to the 

surface considered here. Rather, this is the first extensive ab-initio 

exploration of a surface involving more than three atoms. A similar 

variety of features is probably fairly common among potential energy 

surfaces governing chemical reactions. 
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